首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Recent experiments on the development of neural segmentation in chick embryos are reviewed. 2. Segmentation of the spinal peripheral nerves is governed by a subdivision of the somite-derived sclerotome into anterior and posterior halves. Migrating neural crest cells and outgrowing motor axons are confined to the anterior sclerotome as a result, in part, of inhibitory interactions with posterior sclerotome cells. 3. The sclerotomal distribution of certain molecules known to influence growing nerve cells in vitro, namely laminin, fibronectin, N-CAM, N-Cadherin and J1/tenascin/cytotactin, suggest that these molecules play no critical role in determining the preference of nerve cells for anterior sclerotome. 4. Peanut agglutinin (PNA) recognises cell surface-associated components on posterior cells which, when incorporated into liposomes, cause the abrupt collapse of sensory growth cones in vitro. The PNA receptor(s) may be inhibitory for nerve cells in vivo. 5. The chick hindbrain epithelium is segmented early in its development. Each branchiomotor nucleus in the series of cranial nerves V, VII and IX derives from a pair of segments lying in register with an adjacent branchial arch. Neurogenesis of motor and reticular axons begins in alternate segments, suggesting parallels with insect pattern formation.  相似文献   

2.
Axon outgrowth between the spinal cord and the hindlimb of the chick embryo is constrained by three tissues that border axon pathways. Growth cones turn to avoid the posterior sclerotome, perinotochordal mesenchyme, and pelvic girdle precursor during normal development and after experimental manipulation. We wanted to know if these functionally similar barriers to axon advance also share a common molecular composition. Since the posterior sclerotome differentially binds peanut agglutinin (PNA) and since PNA binding is also typical of prechondrogenic differentiation, we examined the pattern of expression of PNA binding sites and cartilage proteoglycan epitopes in relation to axon outgrowth. We found that all three barrier tissues preferentially express both PNA binding sites and chondroitin-6-sulfate (C-6-S) immunoreactivity at the time when growth cones avoid these tissues. Moreover, both epitopes are expressed in the roof plate of the spinal cord and in the early limb bud, two additional putative barriers to axon advance. In contrast, neither epitope is detected in peripheral axon pathways. In the somites, this dichotomous pattern of expression clearly preceded the invasion of the anterior sclerotome by either motor growth cones or neural crest cells. However, in the limb, barrier markers disappeared from presumptive axon pathways in concert with the invasion of axons. Since this coordinate pattern suggested that the absence of barrier markers in these axon pathways requires an interaction with growth cones, we analyzed the pattern of barrier marker expression following unilateral neural tube deletions. We found that PNA-negative axon pathways developed normally even in the virtual absence of axon outgrowth. We conclude that the absence of staining with carbohydrate-specific barrier markers is an independent characteristic of the cells that comprise axon pathways. These results identify two molecular markers that characterize known functional barriers to axon advance and suggest that barrier tissues may impose patterns on peripheral nerve outgrowth by virtue of their distinct molecular composition.  相似文献   

3.
In higher vertebrates, the segmental organization of peripheral spinal nerves is established by a repulsive mechanism whereby sensory and motor axons are excluded from the posterior half-somite. A number of candidate axon repellents have been suggested to mediate this barrier to axon growth, including Sema3A, Ephrin-B, and peanut agglutinin (PNA)-binding proteins. We have tested the candidacy of these factors in vitro by examining their contribution to the growth cone collapse-inducing activity of somite-derived protein extracts on sensory, motor, and retinal axons. We find that Sema3A is unlikely to play a role in the segmentation of sensory or motor axons and that Ephrin-B may contribute to motor but not sensory axon segmentation. We also provide evidence that the only candidate molecule(s) that induces the growth cone collapse of both sensory and motor axons binds to PNA and is not Sema3A or Ephrin-B. By grafting primary sensory, motor, and quail retinal neurons into the chick trunk in vivo, we provide further evidence that the posterior half-somite represents a universal barrier to growing axons. Taken together, these results suggest that the mechanisms of peripheral nerve segmentation should be considered in terms of repellent molecules in addition to the identified molecules.  相似文献   

4.
The development of patterned axon outgrowth and dorsal root ganglion (DRG) formation was examined after partially or totally removing chick somitic mesoderm. Since the dermamyotome is not essential and a full complement of limb muscles developed, alterations in neural patterns could be ascribed to deletion of sclerotome. When somitic tissue was completely removed, axons extended and DRG formed, but in an unsegmented pattern. Therefore the somite does not elicit outgrowth of axons or migration of DRG precursors, it is not a manditory substratum and it is not required for DRG condensation. These results suggest that posterior sclerotome is relatively inhibitory to invasion, an inhibition that is released when sclerotome is absent. When somites were partially deleted, axonal segmentation was not lost proportionally with the amount of sclerotome removed, suggesting that properties that may vary with sclerotome volume (such as diffusible cues) do not play a primary role. Instead, spinal nerves lost segmentation only when ventral sclerotome was deleted, regardless of whether dorsal sclerotome was or was not removed. This strongly suggests that axonal segmentation is imposed by direct interactions between growth cones and extracellular matrices or surfaces sclerotome cells. While DRG tended to be normally segmented when ventral sclerotome was deleted and to lose segmentation when dorsomedial sclerotome was absent, a coordinate loss of DRG segmentation with sclerotome volume could not be ruled out. However it is clear that axonal and DRG segmentation are independent. Observations on a subset of embryos in which the notochord was displaced relative to the spinal cord suggest that the ventromedial sclerotome surrounding the notochord inhibits axon advance. Posterior and ventromedial sclerotome are hypothesized to act as barriers to axon outgrowth due to some feature of their common cartilaginous development. Specific innervation patterns were also examined. When the notochord was displaced toward the control limb, axons on this side made and corrected projection errors, suggesting that the notochord can influence the precision of axonal pathway selection. In contrast, motor axons that entered the limb on all operated sides innervated muscle with their normal precision despite the absence of the somite and axonal segmentation. Therefore, the somite and the process of spinal nerve segmentation are largely irrelevant to the specificity of motoneuron projection.  相似文献   

5.
Chick embryonic motoneurons selectively grow out from the spinal cord as the first step of their selective axonal growth. In order to detect the molecules responsible for motoneuron outgrowth from the cord, we produced and immunohistochemically screened many monoclonal antibodies (MAbs) against cord and somite. We found that two of them, called M7412 and M7902, selectively bound to the cell surface of the anterior half of the sclerotome, where motoneurons selectively extend their axons. Immunohistochemistry and immunoblot results were identical for these antibodies and the antigen was called M7412 antigen. Although neural crest cells also migrate into the anterior half of the sclerotome, the expression of M7412 antigen by sclerotome cells was independent of the neural crest, because neural crest removal did not affect the appearance of the antigen. Furthermore, MAb M7412 bound to the mesenchymal cells along presumptive major nerve trunks in the limb and to the structures surrounding myotubes in muscles during the formation of intramuscular nerve branches. These results suggest that M7412 antigen might be a substrate for general, but not specific, growth of motoneuron axons. If this is the case, we must also infer that some molecule inhibitory for motoneuron growth is localized in the posterior half of sclerotome, because at upper cervical levels the M7412 antigen was also expressed intensely in the posterior sclerotome, whereas motoneurons still grew only into the anterior half. The M7412 antigen was transiently expressed in such various tissues as somite; muscles; blood vessels; spinal cord cells, especially motoneurons innervating the limb; and dorsal root and other peripheral ganglion cells. The M7412 antigenic molecule was extractable with NP40 from a membrane fraction of whole chick embryos and its molecular weight was estimated to be 70 kDa from immunoblot analysis. Thus, our monoclonal antibodies have revealed a new membrane-associated molecule which is likely to play a role in cell-cell interactions during development of motoneurons.  相似文献   

6.
The extracellular molecule semaphorin 3A (Sema3A) is proposed to be a negative guidance cue that participates in patterning DRG sensory axons in the developing chick spinal cord. During development Sema3A is first expressed throughout the spinal cord gray matter, but Sema3A expression later disappears from the dorsal horn, where small-caliber cutaneous afferents terminate. Sema3A expression remains in the ventral horn, where large-muscle proprioceptive afferents terminate. It has been proposed that temporal changes in the sensitivity of different classes of sensory afferents to Sema3A contribute to the different pathfinding of these sensory afferents. This study compared the expression of the semaphorin 3A receptor subunit, neuropilin-1, and the collapse response of growth cones to semaphorin 3A for NGF (cutaneous)- and NT3 (proprioceptive)-dependent sensory axons extended from E6-E10 chick embryos. Growth cones extended from E6 DRGs in NT3-containing medium expressed neuropilin-1 and collapsed in response to Sema3A. From E7 until E10 NT3-responsive growth cones expressed progressively lower levels of neuropilin-1, and were less sensitive to Sema3A. On the other hand, growth cones extended from DRGs in NGF-containing medium expressed progressively higher levels of neuropilin-1 and higher levels of collapse response to Sema3A over the period from E6-E10. Thus, developmental patterning of sensory terminals in the chick spinal cord may arise from changes in both Sema3A expression in the developing spinal cord and accompanying changes in neuronal expression of the Sema3A receptor subunit, neuropilin-1.  相似文献   

7.
The extracellular molecule semaphorin 3A (Sema3A) is proposed to be a negative guidance cue that participates in patterning DRG sensory axons in the developing chick spinal cord. During development Sema3A is first expressed throughout the spinal cord gray matter, but Sema3A expression later disappears from the dorsal horn, where small‐caliber cutaneous afferents terminate. Sema3A expression remains in the ventral horn, where large‐muscle proprioceptive afferents terminate. It has been proposed that temporal changes in the sensitivity of different classes of sensory afferents to Sema3A contribute to the different pathfinding of these sensory afferents. This study compared the expression of the semaphorin 3A receptor subunit, neuropilin‐1, and the collapse response of growth cones to semaphorin 3A for NGF (cutaneous)‐ and NT3 (proprioceptive)‐dependent sensory axons extended from E6‐E10 chick embryos. Growth cones extended from E6 DRGs in NT3‐containing medium expressed neuropilin‐1 and collapsed in response to Sema3A. From E7 until E10 NT3‐responsive growth cones expressed progressively lower levels of neuropilin‐1, and were less sensitive to Sema3A. On the other hand, growth cones extended from DRGs in NGF‐containing medium expressed progressively higher levels of neuropilin‐1 and higher levels of collapse response to Sema3A over the period from E6–E10. Thus, developmental patterning of sensory terminals in the chick spinal cord may arise from changes in both Sema3A expression in the developing spinal cord and accompanying changes in neuronal expression of the Sema3A receptor subunit, neuropilin‐1. © 2002 Wiley Periodicals, Inc. J Neurobiol 51: 43–53, 2002  相似文献   

8.
The analysis of the outgrowth pattern of spinal axons in the chick embryo has shown that somites are polarized into anterior and posterior halves. This polarity dictates the segmental development of the peripheral nervous system: migrating neural crest cells and outgrowing spinal axons traverse exclusively the anterior halves of the somite-derived sclerotomes, ensuring a proper register between spinal axons, their ganglia and the segmented vertebral column. Much progress has been made recently in understanding the molecular basis for somite polarization, and its linkage with Notch/Delta, Wnt and Fgf signalling. Contact-repulsive molecules expressed by posterior half-sclerotome cells provide critical guidance cues for axons and neural crest cells along the anterior-posterior axis. Diffusible repellents from surrounding tissues, particularly the dermomyotome and notochord, orient outgrowing spinal axons in the dorso-ventral axis ('surround repulsion'). Repulsive forces therefore guide axons in three dimensions. Although several molecular systems have been identified that may guide neural crest cells and axons in the sclerotome, it remains unclear whether these operate together with considerable overall redundancy, or whether any one system predominates in vivo.  相似文献   

9.
Membranes from posterior and anterior thirds of the chick optic tectum were added to explants from nasal and temporal retina. Posterior membranes, and to a lesser extent anterior membranes, cause temporal growth cones to collapse and their axonal processes to retract. Neither tectal source has an effect on nasal growth cones. We interpret these results to mean that there is a tectal activity, stronger in the posterior than the anterior region of the tectum, which helps guide growth cones during the development of the retinotectal map. We believe that in vivo this activity helps to steer temporal growth cones away from the posterior tectum. Nasal growth cones, which must map to the posterior tectum, are resistant to it. In vitro, when posterior membranes contact temporal growth cones over their surface, filopodia and lamellipodia withdraw rapidly. This leads to loss of contact between the growth cone and the substrate, followed by collapse.  相似文献   

10.
EphA-ephrin signaling has recently been implicated in the establishment of motor innervation patterns, in particular in determining whether motor axons project into dorsal versus ventral nerve trunks in the limb. We investigated whether sensory axons, which grow out together with and can be guided by motor axons, are also influenced by Eph-ephrin signaling. We show that multiple EphA receptors are expressed in DRGs when limb innervation is being established, and EphA receptors are present on growth cones of both NGF-dependent (predominantly cutaneous) and NT3-dependent (predominantly proprioceptive) afferents. Both soluble and membrane-attached ephrin-A5 inhibited growth of approximately half of each population of sensory axons in vitro. On average, growth cones that collapsed in response to soluble ephrin-A5 extended more slowly than those that did not, and ephrin-A5 significantly slowed the extension of NGF-dependent growth cones that did not collapse. Finally, we show that ectopic expression of ephrin-A5 in ovo reduced arborization of cutaneous axons in skin on the limb. Together these results suggest that sensory neurons respond directly to A-class ephrins in the limb. Thus, ephrins appear to pattern sensory axon growth in two ways-both directly, and indirectly via their inhibitory effects on neighboring motor axons.  相似文献   

11.
The topographic positioning of retinal axons in the optic tectum is regulated, at least in part, by ephrinA/EphA repulsive interactions. Temporal axons, expressing high levels of EphA receptors, project to the ephrinA5-poor anterior tectum and avoid the ephrinA5-rich posterior tectum. To examine the dynamic behavior of temporal growth cones when they first encounter ephrinA, we manipulated ephrinA-coated beads with a laser tweezer into desired positions around the growth cones of chick retinal axons in culture. At high concentrations of ephrinA5 on the beads, growth cones typically collapsed on contacting the bead. At low concentrations, however, growth cones showed heterogeneous responses with some growth cones showing repulsive turning and others showing attractive turning after contacting the bead. Experiments with two beads indicate that retinal axons integrate guidance information that is provided simultaneously at two discrete locations. When a time-delay was introduced between exposure to the first and the second bead, individual axons exhibited a stereotyped response to the repeated stimuli, either responding with attraction followed by attraction, or showing repulsion followed by repulsion or collapse. Our results suggest the existence of at least two retinal subpopulations from the temporal retina, one being attracted, another being repelled by low levels of ephrinA5. These findings demonstrate that temporal retinal axons are not universally repelled by ephrinA5 and suggest that their ability to respond differentially to low concentrations may help them to map in a continuous manner over the surface of the anterior tectum.  相似文献   

12.
The topographic positioning of retinal axons in the optic tectum is regulated, at least in part, by ephrinA/EphA repulsive interactions. Temporal axons, expressing high levels of EphA receptors, project to the ephrinA5‐poor anterior tectum and avoid the ephrinA5‐rich posterior tectum. To examine the dynamic behavior of temporal growth cones when they first encounter ephrinA, we manipulated ephrinA‐coated beads with a laser tweezer into desired positions around the growth cones of chick retinal axons in culture. At high concentrations of ephrinA5 on the beads, growth cones typically collapsed on contacting the bead. At low concentrations, however, growth cones showed heterogeneous responses with some growth cones showing repulsive turning and others showing attractive turning after contacting the bead. Experiments with two beads indicate that retinal axons integrate guidance information that is provided simultaneously at two discrete locations. When a time‐delay was introduced between exposure to the first and the second bead, individual axons exhibited a stereotyped response to the repeated stimuli, either responding with attraction followed by attraction, or showing repulsion followed by repulsion or collapse. Our results suggest the existence of at least two retinal subpopulations from the temporal retina, one being attracted, another being repelled by low levels of ephrinA5. These findings demonstrate that temporal retinal axons are not universally repelled by ephrinA5 and suggest that their ability to respond differentially to low concentrations may help them to map in a continuous manner over the surface of the anterior tectum. © 2004 Wiley Periodicals, Inc. J Neurobiol, 2005  相似文献   

13.
In the developing spinal cord, axons project in both the transverse plane, perpendicular to the floor plate, and in the longitudinal plane, parallel to the floor plate. For many axons, the floor plate is a source of long- and short-range guidance cues that govern growth along both dimensions. We show here that B-class transmembrane ephrins and their receptors are reciprocally expressed on floor plate cells and longitudinally projecting axons in the mouse spinal cord. During the period of commissural axon pathfinding, B-class ephrin protein is expressed at the lateral floor plate boundaries, at the interface between the floor plate and the ventral funiculus. In contrast, B-class Eph receptors are expressed on decussated commissural axon segments projecting within the ventral funiculus, and on ipsilaterally projecting axons constituting the lateral funiculus. Soluble forms of all three B-class ephrins bind to, and induce the collapse of, commissural growth cones in vitro. The collapse-inducing activity associated with B-class ephrins is likely to be mediated by EphB1. Taken together, these data support a possible role for repulsive B-class Eph receptor/ligand interactions in constraining the orientation of longitudinal axon projections at the ventral midline.  相似文献   

14.
The adhesive interactions of nerve growth cones stabilize elongating nerve fibers and mediate transmembrane signaling to regulate growth cone behaviors. We used interference reflection microscopy and immunocytochemistry to examine the dynamics and composition of substratum contacts that growth cones of chick sensory neurons make with extracellular adhesive glycoproteins, fibronectin and laminin. Interference reflection microscopy indicated that sensory neuronal growth cones on fibronectin-treated substrata, but not on laminin, make contacts that have the appearance and immobility of fibroblastic focal contacts. Interference reflection microscopy and subsequent immunocytochemical staining showed that β1 integrin and phosphotyrosine residues were concentrated at growth cone sites that resemble focal contacts. Two other components of focal contacts, paxillin and zyxin, were also co-localized with concentrated phosphotyrosine residues at sites that resemble focal contacts. Such staining patterns were not observed on laminin-treated substrata. Growth cone migration on fibronectin-treated substrata was inhibited by herbimycin A, a tyrosine kinase inhibitor. We conclude that sensory neuronal growth cones distinguish fibronectin from laminin by making contacts with distinct organization and regulation of cytoskeletal components at the adhesive sites. This finding suggests that growth cone interactions with different adhesive molecules lead to distinctive transmembrane organization and signaling to regulate nerve fiber elongation. © 1996 John Wiley & Sons, Inc.  相似文献   

15.
During nervous system development, neurons form synaptic contacts with distant target cells. These connections are formed by the extension of axonal processes along predetermined pathways. Axon outgrowth is directed by growth cones located at the tips of these neuronal processes. Although the behavior of growth cones has been well-characterized in vitro, it is difficult to observe growth cones in vivo. We have observed motor neuron growth cones migrating in living Caenorhabditis elegans larvae using time-lapse confocal microscopy. Specifically, we observed the VD motor neurons extend axons from the ventral to dorsal nerve cord during the L2 stage. The growth cones of these neurons are round and migrate rapidly across the epidermis if they are unobstructed. When they contact axons of the lateral nerve fascicles, growth cones stall and spread out along the fascicle to form anvil-shaped structures. After pausing for a few minutes, they extend lamellipodia beyond the fascicle and resume migration toward the dorsal nerve cord. Growth cones stall again when they contact the body wall muscles. These muscles are tightly attached to the epidermis by narrowly spaced circumferential attachment structures. Stalled growth cones extend fingers dorsally between these hypodermal attachment structures. When a single finger has projected through the body wall muscle quadrant, the growth cone located on the ventral side of the muscle collapses and a new growth cone forms at the dorsal tip of the predominating finger. Thus, we observe that complete growth cone collapse occurs in vivo and not just in culture assays. In contrast to studies indicating that collapse occurs upon contact with repulsive substrata, collapse of the VD growth cones may result from an intrinsic signal that serves to maintain growth cone primacy and conserve cellular material.  相似文献   

16.
Previous in vitro studies using cGMP or cAMP revealed a cross-talk between signaling mechanisms activated by axonal guidance receptors. However, the molecular elements modulated by cyclic nucleotides in growth cones are not well understood. cGMP is a second messenger with several distinct targets including cGMP-dependent protein kinase I (cGKI). Our studies indicated that the alpha isoform of cGKI is predominantly expressed by sensory axons during developmental stages, whereas most spinal cord neurons are negative for cGKI. Analysis of the trajectories of axons within the spinal cord showed a longitudinal guidance defect of sensory axons within the developing dorsal root entry zone in the absence of cGKI. Consequently, in cGKI-deficient mice, fewer axons grow within the dorsal funiculus of the spinal cord, and lamina-specific innervation, especially by nociceptive sensory neurons, is strongly reduced as deduced from anti-trkA staining. These axon guidance defects in cGKI-deficient mice lead to a substantial impairment in nociceptive flexion reflexes, shown using electrophysiology. In vitro studies revealed that activation of cGKI in embryonic dorsal root ganglia counteracts semaphorin 3A-induced growth cone collapse. Our studies therefore reveal that cGMP signaling is important for axonal growth in vivo and in vitro.  相似文献   

17.
We wished to know whether the cell death and phagocytosis seen near the outgrowing nerve front in the hindlimb delineate axon pathways and, if so, whether the cells died only in the presence of growth cones. We unilaterally deleted the lumbosacral neural tube and reconstructed the patterns of neurite outgrowth and phagocytes during the stage when neurites first begin to colonize the thigh. In the control limbs, sensory and motor nerve pathways coincided with sites of phagocytosis, including those pathways that had yet to be colonized by growth cones. For instance, phagocytes were clustered at foci within the muscle masses where muscle nerves form a day later. However, they were not seen in adjacent, nonpathway regions such as posterior sclerotome or dorsal and ventral to the region of the plexus in which axons extend only posteriorly. Phagocytes were also seen in defined regions that are probably inaccessible to growth cones because they are too distant from pathways (i.e., subjacent to the apical ectodermal ridge) or express substances that are typical of precartilagenous tissues which may prohibit axon advance. In the experimental limbs, we conservatively estimated that neurite outgrowth was reduced to less than one-tenth (neurites were visible only with electron microscopy) or less than one-third of normal. Outgrowth extended less far distally and, in half the cases, motor innervation was completely abolished. Despite the extensive reduction in neurite outgrowth, the distribution of phagocytes was indistinguishable from that of the control side. Furthermore, the number of phagocytes did not differ significantly. We conclude that cell death delineates axon pathways remarkably well and does so without an interaction with growth cones; it is an independent characteristic of the axonal pathways and may be directly or indirectly important to axonal pathfinding. This is the first identification of a feature that characterizes prospective nerve pathways in the hindlimb.  相似文献   

18.
Nerve growth factor (NGF) and semaphorin3A (Sema3A) are guidance cues found in pathways and targets of developing dorsal root ganglia (DRG) neurons. DRG growth cone motility is regulated by cytoplasmic signaling triggered by these molecules. We investigated interactions of NGF and Sema3A in modulating growth cone behaviors of axons extended from E7 chick embryo DRGs. Axons extending in collagen matrices were repelled by Sema3A released from transfected HEK293 cells. However, if an NGF-coated bead was placed adjacent to Sema3A-producing cells, axons converged at the NGF bead. Growth cones of DRGs raised in 10(-9) M NGF were more resistant to Sema3A-induced collapse than when DRGs were raised in 10(-11) M NGF. After overnight culture in 10(-11) M NGF, 1-hr treatment with 10(-9) M NGF also increased growth cone resistance to Sema3A. Pharmacological studies indicated that the activities of ROCK and PKG participate in the cytoskeletal alterations that lead to Sema3A-induced growth cone collapse, whereas PKA activity is required for NGF-mediated reduction of Sema3A-induced growth cone collapse. These results support the idea that growth cone responses to a guidance cue can be modulated by interactions involving coincident signaling by other guidance cues.  相似文献   

19.
The early development of interneurons in the chick embryo spinal cord was studied using a monoclonal antibody against a neuron-specific beta-tubulin isoform. Early developing interneurons were divided into two cell groups on the basis of their location and the pattern of growth of their axons. One group is composed of cells that establish a primitive longitudinal pathway (PL-cells), whereas the other group contains cells constituting a circumferential pathway (C-cells). The onset of axonal development in both cell groups occurs at stage (st.) 15 (embryonic day, (E), 2) in the branchial segments, which is prior to axonogenesis of motoneurons. PL-cells develop in the region between the floor plate and the motoneuron nucleus. Their axons are the first neuronal processes ('pioneer axons') to arrive in the ventrolateral marginal zone and they project both rostrally and caudally to establish a primitive longitudinal association pathway at the ventrolateral surface of the neural tube. This pathway is formed before axons of C-cells arrive in the ventrolateral region. The first C-cells are initially located in the most dorsal portion of the neural tube, whereas later appearing C-cells are also located in both intermediate and ventral regions of the neural tube. The axons of C-cells project ventrally, without fasciculating, along the lateral border of the neural tube. Some of their axons enter the ipsilateral ventrolateral longitudinal pathway at st. 17. We often observed apparent contacts and interactions between preexisting axons of PL-cells and newly arriving axons of C-cells. The axons of commissural C-cells first enter the floor plate at st. 17 and cross the midline at st. 18. Axons of C cells begin to join the contralateral ventrolateral longitudinal pathway at st. 18+ to st. 19. In the floor plate region, contacts between growth cones and axons were often observed. However, axons in the floor plate at these stages were not fasciculated. These observations establish the timing and pattern of growth of axons from two specific populations of early developing interneurons in the chick spinal cord. Additionally, we have identified an early and apparently previously undescribed 'pioneer' pathway that constitutes the first longitudinal pathway in the chick spinal cord.  相似文献   

20.
To determine the initial growth pattern of pioneering axons and investigate the factors that may influence their guidance, the lateral margin of a stage 16+ chick brachial spinal cord was examined in serial thin sections. The specimen was prepared with hypertonic fixative which partially shrank the tissue and increased extracellular space. The retention of surface contact after shrinkage was used as an index of the relative adhesiveness between cells in situ. Six axons and growth cones were found within the reconstructed tissue; five were oriented dorsoventrally and one apparent motor neuron growth cone was oriented radially. The five circumferential axons originated from presumptive interneurons distributed in a dispersed pattern along the neural tube lateral wall. Four terminated with growth cones, and each extended a short distance (less than 30 microns) ventrally along the outer margin. No contact was found between these nonfasciculating axons or growth cones. Thus, the earliest intracentral axons appear to grow dorsoventrally from the outset with no appreciable wandering. Morphological features that may indicate their mechanism of guidance, including preformed cellular guides, extracellular channels, contact with basal lamina, and intercellular junctions were not found. The preferential retention of surface contact between adjacent endfeet, as well as between pioneering circumferential axons and neuroepithelial cells, suggests that these particular surfaces are mutually adherent. These findings are consistent with a proposed dorsal-to-ventral adhesive gradient mechanism of circumferential axonal guidance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号