首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The prenatal exposure of mice to diethylstilbestrol (DES, 10 micrograms/kg on day 15 of gestation) caused both quantitative and structural alterations in ovarian follicles within the neonatal ovary. At birth, control ovaries consisted of small type 1 and 2 ovarian follicles located in the ovarian cortex. By postnatal day 7, ovarian follicle development had advanced to the type 4 stage with larger follicles located within the ovarian medulla. In DES-exposed animals, ovarian follicle maturation was advanced with type 3b and 4 follicles appearing 24 h prior to their appearance in control animals. Also, type 5 ovarian follicles were present on postnatal day 6 in experimental animals but were never seen in control animals. In addition to an alteration in ovarian follicle dynamics, the diameter of individual ovarian follicles was transit time between the various stages of follicular development which results in a greater number of developmentally advanced ovarian follicles being present during neonatal ovarian development. The mechanism by which prenatal exposure to DES alters ovarian follicle dynamics during neonatal development is not known.  相似文献   

3.
Diethylstilbestrol (DES) treatment of female rats on postnatal days (PND) 1-5 reduces uterine growth, estrogen receptor (ER) level and gland number by PND 25, while daily DES treatment on PND 1-25 increases uterine growth 4-fold, further reduces ER level and completely suppresses gland formation. We now report the persistence of these effects in adults. By PND 60, uterine weight was 70% of controls in rats injected with DES on PND 1-5 but only 10% of controls in rats injected PND 1-10 or longer. In fact, uterine weights were the same on PND 10 and 60. Uterine gland numbers were reduced to 30% of controls in all DES-treated rats regardless of exposure length; however, luminal and glandular epithelial cell heights were reduced to less than 50 and 70%, respectively, of controls when DES was given on PND 1-25 but not when given on PND 1-5. Ovariectomy 7 days prior to sacrifice on PND 60 reduced uterine weight in controls by 67% and in rats injected with DES on PND 1-5 by 53%, but had no effect in rats injected with DES on PND 1-10. DES exposure at either PND 1-5 or 1-10 lowered ER levels by 35-50% at both 60 and 90 days. Treatment with a high dose of estradiol (E2) 1 week before sacrifice significantly down-regulated ER to the same concentration in all treatment groups at PND 60 and 90. Following E2 treatment, all groups also showed increased uterine weight at PND 60 and 90. These data show there is a short period of development (PND 5-10) in which further DES exposure indirectly inhibits uterine growth.  相似文献   

4.
Prenatal nicotine exposure with continued exposure through breast milk over the first week of life (developmental nicotine exposure, DNE) alters the development of brainstem circuits that control breathing. Here, we test the hypothesis that DNE alters the respiratory motor response to endogenous and exogenous acetylcholine (ACh) in neonatal rats. We used the brainstem‐spinal cord preparation in the split‐bath configuration, and applied drugs to the brainstem compartment while measuring the burst frequency and amplitude of the fourth cervical ventral nerve roots (C4VR), which contain the axons of phrenic motoneurons. We applied ACh alone; the nicotinic acetylcholine receptor (nAChR) antagonist curare, either alone or in the presence of ACh; and the muscarinic acetylcholine receptor (mAChR) antagonist atropine, either alone or in the presence of ACh. The main findings include: (1) atropine reduced frequency similarly in controls and DNE animals, while curare caused modest slowing in controls but no consistent change in DNE animals; (2) DNE greatly attenuated the increase in C4VR frequency mediated by exogenous ACh; (3) stimulation of nAChRs with ACh in the presence of atropine increased frequency markedly in controls, but not DNE animals; (4) stimulation of mAChRs with ACh in the presence of curare caused a modest increase in frequency, with no treatment group differences. DNE blunts the response of the respiratory central pattern generator to exogenous ACh, consistent with reduced availability of functionally competent nAChRs; DNE did not alter the muscarinic control of respiratory motor output. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1138–1149, 2016  相似文献   

5.
Humans and wildlife are exposed to numerous anthropogenic drugs and pollutants. Many of these compounds are hormonally active, and recent evidence suggests that the presence of these endocrine disruptors permanently alters normal development and physiology in a variety of vertebrate species. Here, we report on the effects of developmental exposure to two common estrogenic pollutants, bisphenol A and ethinyl estradiol on sexually dimorphic, non-reproductive behavior. Mice (Mus musculus domesticus) were exposed to environmentally relevant levels of these chemicals (2 and 200 microg/kg/day for bisphenol A and 5 microg/kg/day for ethinyl estradiol) throughout prenatal and early postnatal development. As adults, the animals were observed in a variety of tests measuring sexually dimorphic behaviors including short-term spatial memory (in a radial-arm maze and a Barnes maze) and anxiety (in an elevated-plus maze and a light/dark preference chamber). Developmental exposure to ethinyl estradiol was found to masculinize behavior in all of the assays used. Bisphenol A increased anxious behavior in a dose-dependent fashion but had no effect on spatial memory. These results indicate that non-reproductive, sexually dimorphic behavior is sensitive to endocrine disruption. In addition, these experiments suggest that both humans and wildlife are being exposed to levels of these endocrine disrupting compounds that are sufficient to disrupt the development of the nervous system and that may have permanent consequences on sexually dimorphic behaviors.  相似文献   

6.
Developmental pathways of anthozoans   总被引:1,自引:0,他引:1  
Fautin  D. G. 《Hydrobiologia》1991,(1):143-149
Stage of propagule release from female parent, and site of development and nutritive mode of embryo are the factors used here to define developmental pathways of anthozoans. Nearly every possible combination of variables of the 3 factors exists, forming a mosaic. Further, a larva may experience serially more than one development site, and may derive nutrition serially or simultaneously from more than a single source. Thus, no fundamental patterns appear to exist. This is probably due to the simplicity of cnidarians, which constrains their development far less than that of other animals.  相似文献   

7.
8.
10 adult female squirrel monkeys were implanted subcutaneously with 4 60 mg pellets of diethylstilbestrol (DES); 4 animals were implanted with cholesterol pellets to serve as controls. Animals were killed at 5, 9, 11, and 14 months after insertion of pellets. All animals implanted with DES had evidence of extreme estrogenic stimulation, including marked edema of the labia, heavy vaginal cornification, and enlargement of the uterine corpus. There were several stages of uterine lesions, in general in proportion to the duration of treatment. The less advanced lesions were restricted to hyperplasia and hyperthrophy of the serosal cells. In more advanced lesions the myometrium was infiltrated; in the most advanced cases there was invasion of the endometrium. The 7 most advanced uterine tumors were classified as malignant mesotheliomas. Cholesterol-treated controls did not have any significant lesions. These observations indicate that DES is carcinogenic in the squirrel monkey, as it has been demonstrated to be in other lower mammalian species.  相似文献   

9.
10.
To determine the effects of transplacental exposure to diethylstilbestrol (DES) on the ovary and oviduct of the CD-1 mouse, timed pregnant mice were injected subcutaneously with DES (100 micrograms/kg) on Days 9 through 16 of gestation and female offspring sacrificed from 4 weeks to 10 months of age. Following DES exposure, ovarian alterations such as inflammation, a prominent interstitial compartment composed of medullary tubule-like structures, and intra- and para-ovarian cysts from mesonephric remnants were observed. In addition, there were oviductal abnormalities including malformation. As reported previously, the oviduct was closely adherent and coiled around the ovary in a similar position to that seen in the fetal mouse. This malformation was termed developmental arrest of the oviduct (DAO) and was a consistent finding in female offspring exposed prenatally to DES (100 micrograms/kg). Increased prevalence of salpingitis and microscopic alterations in the oviduct were also observed. Oviductal epithelium was mostly secretory type with basal vacuoles. In some cases, oviductal epithelium was hyperplastic and formed mucosal folds resembling glands which extended through the muscularis (diverticulosis). The extent of the adenomatous mucosal folds and the degree of extension through the muscularis increased with the age of the animal (100% at 10 months). Some characteristics of this abnormality resembled salpingitis isthmica nodosa, a lesion described in women which is associated with ectopic pregnancies and subfertility. Gross and microscopic changes in the oviduct were more consistent than were the changes among other portions of the reproductive tract of DES-treated mice previously reported. Since subfertility has been described in this mouse model as well as in prenatally DES-exposed women, the data presented in this report may help in evaluation of the reported reduced fertility in exposed patients as well as other infertility patients.  相似文献   

11.
Developmental pathways of somatic embryogenesis   总被引:20,自引:0,他引:20  
Somatic embryogenesis is defined as a process in which a bipolar structure, resembling a zygotic embryo, develops from a non-zygotic cell without vascular connection with the original tissue. Somatic embryos are used for studying regulation of embryo development, but also as a tool for large scale vegetative propagation. Somatic embryogenesis is a multi-step regeneration process starting with formation of proembryogenic masses, followed by somatic embryo formation, maturation, desiccation and plant regeneration. Although great progress has been made in improving the protocols used, it has been revealed that some treatments, coinciding with increased yield of somatic embryos, can cause adverse effects on the embryo quality, thereby impairing germination and ex vitro growth of somatic embryo plants. Accordingly, ex vitro growth of somatic embryo plants is under a cumulative influence of the treatments provided during the in vitro phase. In order to efficiently regulate the formation of plants via somatic embryogenesis it is important to understand how somatic embryos develop and how the development is influenced by different physical and chemical treatments. Such knowledge can be gained through the construction of fate maps representing an adequate number of morphological and molecular markers, specifying critical developmental stages. Based on this fate map, it is possible to make a model of the process. The mechanisms that control cell differentiation during somatic embryogenesis are far from clear. However, secreted, soluble signal molecules play an important role. It has long been observed that conditioned medium from embryogenic cultures can promote embryogenesis. Active components in the conditioned medium include endochitinases, arabinogalactan proteins and lipochitooligosaccharides.  相似文献   

12.
Developmental exposure to high doses of the synthetic xenoestrogen diethylstilbestrol (DES) has been reported to alter femur length and strength in adult mice. However, it is not known if developmental exposure to low, environmentally relevant doses of xenoestrogens alters adult bone geometry and strength. In this study we investigated the effects of developmental exposure to low doses of DES, bisphenol A (BPA), or ethinyl estradiol (EE(2)) on bone geometry and torsional strength. C57BL/6 mice were exposed to DES, 0.1 μg/kg/day, BPA, 10 μg/kg/day, EE(2), 0.01, 0.1, or 1.0 μg/kg/day, or vehicle from Gestation Day 11 to Postnatal Day 12 via a mini-osmotic pump in the dam. Developmental Xenoestrogen exposure altered femoral geometry and strength, assessed in adulthood by micro-computed tomography and torsional strength analysis, respectively. Low-dose EE(2), DES, or BPA increased adult femur length. Exposure to the highest dose of EE(2) did not alter femur length, resulting in a nonmonotonic dose response. Exposure to EE(2) and DES but not BPA decreased tensile strength. The combined effect of increased femur length and decreased tensile strength resulted in a trend toward decreased torsional ultimate strength and energy to failure. Taken together, these results suggest that exposure to developmental exposure to environmentally relevant levels of xenoestrogens may negatively impact bone length and strength in adulthood.  相似文献   

13.
In the pig, estradiol-17beta valerate (EV) exposure from birth (Postnatal Day [PND] 0) disrupts estrogen receptor-alpha (ER)-dependent uterine development and increases embryo mortality in adults. To determine effects of neonatal EV exposure on adult uterine morphology and function, 36 gilts received corn oil (CO) or EV from PND 0 to PND 13. Cyclic and pregnant (PX) adults from each treatment group were hysterectomized on Day 12 after estrus/mating. Treatment and pregnancy effects were determined for uterine weight and horn volume, uterine luminal fluid (ULF) protein and estradiol content, endometrial incorporation of 3H-leucine (3H-Leu) into nondialyzable product, and endometrial mRNA levels for ER, progesterone receptor (PR), uteroferrin (UF), retinol-binding protein (RBP), and keratinocyte growth factor (KGF). Adults cycled normally and had similar numbers of corpora lutea. Uteri of PX gilts contained tubular/filamentous conceptuses, and ULF estradiol content was unaffected by treatment. However, pregnancy increased uterine weight and size only in CO gilts (Treatment x Status, P < 0.01). Treatment reduced ULF protein content (P < 0.01), endometrial 3H-Leu incorporation (P < 0.05), and the pregnancy-associated increase in ULF protein (Treatment x Status, P < 0.01). Treatment did not affect endometrial ER or PR mRNA levels but attenuated the pregnancy-associated increase in UF mRNA (Treatment x Status; P < 0.01), increased RBP (P < 0.10), and decreased KGF mRNA levels (P < 0.05). These results establish that transient postnatal estrogen exposure affects porcine uterine responsiveness to potentially embryotrophic signals and that estrogen-sensitive postnatal uterine organizational events are determinants of uterine size and functionality.  相似文献   

14.
Developmental biology of uterine glands.   总被引:6,自引:0,他引:6  
All mammalian uteri contain endometrial glands that synthesize or transport and secrete substances essential for survival and development of the conceptus (embryo/fetus and associated extraembryonic membranes). In rodents, uterine secretory products of the endometrial glands are unequivocally required for establishment of uterine receptivity and conceptus implantation. Analyses of the ovine uterine gland knockout model support a primary role for endometrial glands and, by default, their secretions in peri-implantation conceptus survival and development. Uterine adenogenesis is the process whereby endometrial glands develop. In humans, this process begins in the fetus, continues postnatally, and is completed during puberty. In contrast, endometrial adenogenesis is primarily a postnatal event in sheep, pigs, and rodents. Typically, endometrial adenogenesis involves differentiation and budding of glandular epithelium from luminal epithelium, followed by invagination and extensive tubular coiling and branching morphogenesis throughout the uterine stroma to the myometrium. This process requires site-specific alterations in cell proliferation and extracellular matrix (ECM) remodeling as well as paracrine cell-cell and cell-ECM interactions that support the actions of specific hormones and growth factors. Studies of uterine development in neonatal ungulates implicate prolactin, estradiol-17 beta, and their receptors in mechanisms regulating endometrial adenogenesis. These same hormones appear to regulate endometrial gland morphogenesis in menstruating primates and humans during reconstruction of the functionalis from the basalis endometrium after menses. In sheep and pigs, extensive endometrial gland hyperplasia and hypertrophy occur during gestation, presumably to provide increasing histotrophic support for conceptus growth and development. In the rabbit, sheep, and pig, a servomechanism is proposed to regulate endometrial gland development and differentiated function during pregnancy that involves sequential actions of ovarian steroid hormones, pregnancy recognition signals, and lactogenic hormones from the pituitary or placenta. That disruption of uterine development during critical organizational periods can alter the functional capacity and embryotrophic potential of the adult uterus reinforces the importance of understanding the developmental biology of uterine glands. Unexplained high rates of peri-implantation embryonic loss in humans and livestock may reflect defects in endometrial gland morphogenesis due to genetic errors, epigenetic influences of endocrine disruptors, and pathological lesions.  相似文献   

15.
Hyperammonemia is considered the main cause for the neurological alterations found in hepatic failure. However, the mechanisms by which high ammonia levels impair cerebral function are not well understood. It has been shown that chronic hyperammonemia impairs signal transduction pathways associated with NMDA receptors and also alters phosphorylation of some neuronal proteins. The aim of the present work was to analyze the effects of chronic exposure to ammonia on phosphorylation of microtubule-associated protein 2 (MAP-2) in intact neurons in culture and to assess whether modulation of MAP-2 phosphorylation by glutamate receptor-associated transduction pathways is altered in neurons chronically exposed to ammonia. It is shown that chronic exposure to ammonia increases basal phosphorylation of MAP-2 by approximately 70%. This effect seems to be due to a decreased tonic activation of NMDA receptors and of calcineurin. Chronic exposure to ammonia also alters the modulation of MAP-2 phosphorylation by NMDA receptors and metabotropic glutamate receptors. In neurons exposed to ammonia, treatment with NMDA for 30 min induced a significant decrease in phosphorylation of MAP-2. Activation of metabotropic glutamate receptors with (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid significantly increased phosphorylation of MAP-2 in control neurons, whereas in neurons exposed to ammonia the response was the opposite, with 1-aminocyclopentane-1,3-dicarboxylic acid inducing a dephosphorylation of MAP-2. These results indicate that ammonia alters significantly signal transduction pathways associated with different types of glutamate receptors. This would lead therefore to significant alterations in glutamatergic neurotransmission, which would contribute to the neurological alterations found in hyperammonemia and in hepatic encephalopathy.  相似文献   

16.
A hallmark of cancer is reactivation/alteration of pathways that control cellular differentiation during developmental processes. Evidence indicates that WNT, Notch, BMP and Hedgehog pathways have a role in normal epithelial cell differentiation, and that alterations in these pathways accompany establishment of the tumorigenic state. Interestingly, there is recent evidence that these pathways are intertwined at the molecular level, and these nodes of intersection may provide opportunities for effective targeted therapies. This review will highlight the role of the WNT, Notch, BMP and Hedgehog pathways in colon cancer.  相似文献   

17.
Estrogenic endocrine disruptors (EEDs) are naturally occurring or man-made compounds present in the environment that are able to bind to estrogen receptors and interfere with normal cellular development in target organs and tissues. There is mounting evidence that EEDs can interfere with the processes of sexual differentiation of brain and behavior in different animal models. We investigated the effects of maternal exposure to EEDs, at concentrations within the range of human exposure and not patently teratogenic, on behavioral responses of male and female house mice (Mus musculus domesticus) before and after puberty. Pregnant dams were trained to spontaneously drink daily doses of corn oil with or without the estrogenic plastic derivative, bisphenol A (BPA 10 microg/kg), or the estrogenic insecticide methoxychlor (MXC 20 microg/kg) from gestation day 11 to postpartum day 8. Their male and female offspring were examined at different ages to examine several components of explorative and emotional behaviors in 3 experimental paradigms: a novelty test before puberty and, as adults, a free-exploratory open-field test and the elevated plus maze test. The main results are sex differences in control mice on a number of behavioral responses at both ages and in all experimental paradigms, while perinatal exposure to BPA or MXC decreased or eliminated such sex differences. The present findings are evidence of long-term consequences of developmental exposure to BPA and MXC on neurobehavioral development and suggest a differential effect of low-dose exposure to these estrogenic chemicals in males and females.  相似文献   

18.
Exposure of the developing urogenital tract to steroids can affect structure and function of adult tissues and compromise reproductive performance. This study was conducted to determine 1) if exposure of neonatal heifer calves to progesterone (P) and estradiol benzoate (E), delivered from a commercial growth-promoting implant, would affect adult uterine morphology or uterine luminal protein content; and 2) whether such effects would be related to neonatal age at the first exposure. At birth (Day 0), 20 crossbred beef heifers were assigned to 1 of 4 treatment groups (n = 5 per group), defined by age at implant placement. Heifers either received an implant on Days 0, 21 or 45, or served as untreated controls. The heifers were maintained together and slaughtered at 15 mo of age, during the luteal phase of an induced estrous cycle, when reproductive tracts and blood samples were obtained. Peripheral plasma P concentrations were determined by RIA. Uterocervical wet weights were recorded, and uterine luminal flushings (ULF) were assayed for total protein. Cross-sections of uterine tissues were evaluated histomorphometrically to determine myometrial and endometrial areas and relative endometrial gland density. Treatment did not affect plasma P concentrations (3.2 +/- 0.5 ng/ml). Regardless of age at treatment, neonatal PE exposure reduced uterocervical wet weight by 35% (112.8 < 173.9 +/- 13.9 g; P < 0.01), myometrial area by 23% (125.3 < 162.8 +/- 8.5 mm2; P < 0.02), and endometrial area by 27% (33.3 < 45.4 +/- 2.7 mm2; P < 0.09) compared with the untreated controls. Endometrial gland density was reduced (P < 0.01) by 40% in treated heifers. This effect was related to age at implant placement. Uterine gland density was reduced (P < 0.01) by 65% in heifers treated at birth, while reductions of 22 and 33% were observed for heifers treated on neonatal Day 21 or 45, respectively. Consistently, ULF protein content was lower (P < 0.01) in the treated heifers (2.67 < 4.98 +/-. 72 mg/ULF). Thus, exposure of newborn calves to PE can have profound effects on adult uterine morphology and environment, the extent of which may depend upon the developmental period when exposure occurs. The potential of such alterations to affect reproductive performance in adult beef heifers remains to be investigated.  相似文献   

19.
Obesity is a metabolic disorder that predisposes to numerous diseases and has become a major global public health concern. Cafeteria diet (CAF) is the animal model used for the study of obesity that more closely reflects Western diet habits. Previously, we described that CAF administration for 60 days induces obesity in female rats and their fetuses develop macrosomia. Given that, in our model, rats are not genetically modified and that obese mothers were fed standard chow during pregnancy, the aim of the current study was to test the hypothesis that obesity alters the intrauterine environment prior to pregnancy, and this may explain the exacerbated fetal weight gain. We found that uteri from obese rats during the estrous phase developed insulin resistance through mechanisms that involve the induction of uterine hypoxia and the down-regulation of the insulin receptor gene. Moreover, uterine cell proliferation was induced by obesity concomitantly with the reduction in the uterine contractile response to a β2 AR agonist, salbutamol, and this may be consequence of the down-regulation in the uterine β2 AR expression. We conclude that CAF-induced obesity alters the uterine environment in rats during the estrous phase and may cause the fetal macrosomia previously described by us in obese animals. The lower sensitivity of the uterus to a relaxation stimulus (salbutamol) is not a minor fact given that for implantation to occur the uterus must be relaxed for embryo nidation. Thus, the alteration in the uterine quiescence may impair implantation and, consequently, the foregoing pregnancy.  相似文献   

20.
Aflatoxin B1-DNA adduct concentrations were measured in the livers of adult Sprague-Dawley CD rats treated on days 2, 4, and 6 postnatally with 1.45 mumols of diethylstilbestrol and in adulthood with phenobarbital, 3-methylcholanthrene, or vehicle prior to treatment with aflatoxin B1. Aflatoxin B1 (1 mg/kg) was injected 5 hr prior to killing the rats. Female rats exposed neonatally to diethylstilbestrol had significantly higher aflatoxin B1-DNA adduct concentrations (three- to sixfold) than adult female rats treated neonatally with propylene glycol. Liver aflatoxin B1-DNA adduct concentrations were slightly higher in control males as compared to adduct concentrations in neonatally diethylstilbestrol-treated males, as compared to adduct concentrations in control females (not significant [NS]). Phenobarbital and 3-methylcholanthrene treatment followed by aflatoxin B1 injection resulted in decreased aflatoxin B1-DNA adduct concentrations in all rats. Our results demonstrate that neonatal exposure to diethylstilbestrol alters the capacity of adult female rats to form and/or dispose of carcinogen-DNA adducts following a single dose of aflatoxin B1 (increased adduct concentration). This alteration may be a consequence of altered imprinting mechanisms with diethylstilbestrol causing developmental modifications early in life. The animals were, however, able to respond to cytochrome P-450 and P-448 inducers as evidenced by decreased aflatoxin B1-DNA adduct concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号