首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A high-isoelectric-point (pI), alkaline endo-1,4-β-glucanase (Egl-257) of Bacillus circulans KSM-N257 was purified to homogeneity and crystallized. The purified enzyme hydrolyzed carboxymethyl cellulose (CMC) with optima of pH 8.5 and 55 °C. The molecular mass was 43 kDa, and the pI was pH 9.3. The structural gene contained a single open reading frame of 1221 bp, corresponding to 407 amino acids (aa), including a 30-aa signal peptide (377 aa and 41,680 Da for the mature enzyme). Egl-257 hydrolyzed lichenan and showed 76.3% aa identity to a lichenase from B. circulans WL-12 belonging to glycosyl hydrolase family 8 but did not hydrolyze laminarin, curdran, and xylan at all. This indicates that Egl-257 is a true endo-1,4-β-glucanase. However, this enzyme was not active on p-nitrophenyl β-d-cellotrioside and p-nitrophenyl β-d-cellotetraoside. It was crystallized by the hanging-drop vapor-diffusion method with phosphate plus CdCl2 as precipitant. Pyramid-like crystals were formed, and they diffracted X-rays beyond 2.2 Å resolution. It belongs to the space group P212121 with unit cell parameters of a=62.5 Å, b=71.7 Å, and c=88.6 Å.  相似文献   

2.
A high-isoelectric-point (pI), alkaline endo-1,4-beta-glucanase (Egl-257) of Bacillus circulans KSM-N257 was purified to homogeneity and crystallized. The purified enzyme hydrolyzed carboxymethyl cellulose (CMC) with optima of pH 8.5 and 55 degrees C. The molecular mass was 43 kDa, and the pI was pH 9.3. The structural gene contained a single open reading frame of 1221 bp, corresponding to 407 amino acids (aa), including a 30-aa signal peptide (377 aa and 41,680 Da for the mature enzyme). Egl-257 hydrolyzed lichenan and showed 76.3% aa identity to a lichenase from B. circulans WL-12 belonging to glycosyl hydrolase family 8 but did not hydrolyze laminarin, curdran, and xylan at all. This indicates that Egl-257 is a true endo-1,4-beta-glucanase. However, this enzyme was not active on p-nitrophenyl beta-D-cellotrioside and p-nitrophenyl beta-D-cellotetraoside. It was crystallized by the hanging-drop vapor-diffusion method with phosphate plus CdCl(2) as precipitant. Pyramid-like crystals were formed, and they diffracted X-rays beyond 2.2 A resolution. It belongs to the space group P2(1)2(1)2(1) with unit cell parameters of a=62.5 A, b=71.7 A, and c=88.6 A.  相似文献   

3.
Summary Bacillus circulans VTT-E-87305 was found to be an efficient producer of endo--xylanase in alkaline media. The enzyme was induced by xylan. The highest activities, up to 6600 nkat/ml (400 IU/ml) were produced within 2 days. Extracellular -xylosidase was also produced but the production of side-chain splitting enzymes (-arabinosidase and acetylxylanesterase) and of cellulase was low. The pH optimum of the overall xylan saccharifying activity was 7.0 and 40% of the maximal activity was expressed at pH 9.0. Correspondence to: M. Rättö  相似文献   

4.
Summary Alignment of the amino acid sequences of the cyclodextrin glycosyltransferases and their signal peptides from Bacillus circulans strain 8 and a strain of B. licheniformis revealed high homology with 90.8% and 85.3% of identical amino acids. Of the codons of the CGTase genes and of the leader sequences, 45.2% and 47.0%, respectively, proved to be identical.  相似文献   

5.
6.
7.
8.
An endoglucanase was purified to homogeneity from an alkaline culture broth of a strain isolated from␣seawater and identified here as Bacillus agaradhaerens JAM-KU023. The molecular mass was around 38-kDa and the N-terminal 19 amino acids of the purified enzyme exhibited 100% sequence identity to Cel5A of B. agaradhaerens DSM8721T. The enzyme activity increased around 4-fold by the addition of 0.2–2.0 M NaCl in 0.1 M glycine–NaOH buffer (pH 9.0). KCl, Na2SO4, NaBr, NaNO3, CH3COONa, LiCl, NH4NO3, and NH4Cl also activated the enzyme up to 2- to 4-fold. The optimal pH and temperature values were pH 7–9.4 and 60 °C with 0.2 M NaCl, but pH 6.5–7 and 50 °C without NaCl; enzyme activity increased approximately 6-fold at 60 °C with 0.2 M NaCl compared to that at 50 °C without NaCl in 0.1 M glycine–NaOH buffer (pH 9.0). The thermostability and pH stability of the enzyme were not affected by NaCl. The enzyme was very stable to several chemical compounds, surfactants and metal ions (except for Fe2+ and Hg2+ ions), regardless whether NaCl was present or not. * The nucleotide sequence of 16S rRNA of this strain has been submitted to DDBJ, EMBL, and GenBank databases under accession no. AB211544.  相似文献   

9.
A novel glucanotransferase, involved in the synthesis of a cyclomaltopentaose cyclized by an alpha-1,6-linkage [ICG5; cyclo-{-->6)-alpha-D-Glcp-(1-->4)-alpha-D-Glcp-(1-->4)-alpha-D-Glcp-(1-->4)-alpha-D-Glcp-(1-->4)-alpha-D-Glcp-(1-->}], from starch, was purified to homogeneity from the culture supernatant of Bacillus circulans AM7. The pI was estimated to be 7.5. The molecular mass of the enzyme was estimated to be 184 kDa by gel filtration and 106 kDa by SDS-PAGE. These results suggest that the enzyme forms a dimer structure. It was most active at pH 4.5 to 8.0 at 50 degrees C, and stable from pH 4.5 to 9.0 at up to 35 degrees C. The addition of 1 mM Ca(2+) enhanced the thermal stability of the enzyme up to 40 degrees C. It acted on maltooligosaccharides that have degrees of polymerization of 3 or more, amylose, and soluble starch, to produce ICG5 by an intramolecular alpha-1,6-glycosyl transfer reaction. It also catalyzed the transfer of part of a linear oligosaccharide to another oligosaccharide by an intermolecular alpha-1,4-glycosyl transfer reaction. Thus the ICG5-forming enzyme was found to be a novel glucanotransferase. We propose isocyclomaltooligosaccharide glucanotransferase (IGTase) as the trivial name of this enzyme.  相似文献   

10.
Cyclodextrin glycosyltransferases (CGTase) (EC 2.4.1.19) are extracellular bacterial enzymes that generate cyclodextrins from starch. All known CGTases produce mixtures of alpha, beta, and gamma-cyclodextrins. A maltononaose inhibitor bound to the active site of the CGTase from Bacillus circulans strain 251 revealed sugar binding subsites, distant from the catalytic residues, which have been proposed to be involved in the cyclodextrin size specificity of these enzymes. To probe the importance of these distant substrate binding subsites for the alpha, beta, and gamma-cyclodextrin product ratios of the various CGTases, we have constructed three single and one double mutant, Y89G, Y89D, S146P and Y89D/S146P, using site-directed mutagenesis. The mutations affected the cyclization, coupling; disproportionation and hydrolyzing reactions of the enzyme. The double mutant Y89D/S146P showed a twofold increase in the production of alpha-cyclodextrin from starch. This mutant protein was crystallized and its X-ray structure, in a complex with a maltohexaose inhibitor, was determined at 2.4 A resolution. The bound maltohexaose molecule displayed a binding different from the maltononaose inhibitor, allowing rationalization of the observed change in product specificity. Hydrogen bonds (S146) and hydrophobic contacts (Y89) appear to contribute strongly to the size of cyclodextrin products formed and thus to CGTase product specificity. Changes in sugar binding subsites -3 and -7 thus result in mutant proteins with changed cyclodextrin production specificity.  相似文献   

11.
A 2(2) factorial design was performed to find the best conditions of pH and temperature for xylanolytic activity of Bacillus circulans BL53 isolated from the Amazon environment. Solid-state cultivation was carried out on an inexpensive, abundant agro-industrial soybean residue. The central composite design (CCD) used for the analysis of treatment combinations showed that a second-order polynomial regression model was in good agreement with experimental results, with R(2) = 0.9369 (P < 0.05). The maximum activity was obtained at a high temperature (80 degrees C) and over a large pH range (4.0-7.0). Enzymatic activity was maintained in heated extracts up to 50 degrees C, suggesting that the xylanases of B. circulans BL53 are thermo-tolerant biocatalysts, being of interest for industrial processes. The crude enzyme extract hydrolyzed rice straw, sugar cane bagasse and soybean fiber and its activity was stimulated by Co(2+), Fe(3+), and beta-mercaptoethanol but inhibited by Mn(2+), Cu(2+), Ca(2+), Zn(2+), Ba(2+), Mg(2+) and by EDTA.  相似文献   

12.
Endoglucanase production by Bacillus circulons LS9 was increased through culture medium optimization, leading to 3,6 U/ml titers. Endoglucanase excretion, which is associated with other polysaccharide degrading activities, is not sporulation associated and not totally repressed by glucose or cellobiose. Moreover, the optimum pH for endoglucanase activity is close to pH 7.  相似文献   

13.
The gene for a novel glucanotransferase, isocyclomaltooligosaccharide glucanotransferase (IgtY), involved in the synthesis of a cyclomaltopentaose cyclized by an alpha-1,6-linkage [ICG5; cyclo-{-->6)-alpha-D-Glcp-(1-->4)-alpha-D-Glcp-(1-->4)-alpha-D-Glcp-(1-->4)-alpha-D-Glcp-(1-->4)-alpha-D-Glcp-(1-->}] from starch, was cloned from the genome of B. circulans AM7. The IgtY gene, designated igtY, consisted of 2,985 bp encoding a signal peptide of 35 amino acids and a mature protein of 960 amino acids with a calculated molecular mass of 102,071 Da. The deduced amino-acid sequence showed similarities to 6-alpha-maltosyltransferase, alpha-amylase, and cyclomaltodextrin glucanotransferase. The four conserved regions common in the alpha-amylase family enzymes were also found in this enzyme, indicating that this enzyme should be assigned to this family. The DNA sequence of 8,325-bp analyzed in this study contained two open reading frames (ORFs) downstream of igtY. The first ORF, designated igtZ, formed a gene cluster, igtYZ. The amino-acid sequence deduced from igtZ exhibited no similarity to any proteins with known or unknown functions. IgtZ was expressed in Escherichia coli, and the enzyme was purified. The enzyme acted on maltooligosaccharides that have a degree of polymerization (DP) of 4 or more, amylose, and soluble starch to produce glucose and maltooligosaccharides up to DP5 by a hydrolysis reaction. The enzyme (IgtZ), which has a novel amino-acid sequence, should be assigned to alpha-amylase. It is notable that both IgtY and IgtZ have a tandem sequence similar to a carbohydrate-binding module belonging to a family 25. These two enzymes jointly acted on raw starch, and efficiently generated ICG5.  相似文献   

14.
15.
Crystals of cyclomaltodextrin glucanotransferase from Bacillus circulans (EC 2.4.1.19) suitable for high-resolution X-ray analysis were obtained by vapor diffusion against 60% (v/v) 2-methyl 2,4-pentanediol buffered with 100 mM-sodium Hepes, pH 7.55. The crystals have P2(1)2(1)2(1) space group symmetry, with a = 120.4 A, b = 110.9 A and c = 66.4 A, and contain one molecule of 68,000 in the asymmetric unit. Growth of single enzyme crystals was found to require the presence of either alpha-cyclodextrin, beta-cyclodextrin, gamma-cyclodextrin, or maltose in high molar excess, a requirement that could not be fulfilled by glucose, the basic building block of these compounds. Although the exact role of cyclic and linear maltodextrins in enzyme crystallization is not yet known, we have preliminary evidence that these compounds are degraded by the enzyme in the crystallization droplet.  相似文献   

16.
《Process Biochemistry》2007,42(7):1150-1154
The gene encoding a family 5 endoglucanase, cel5A, was cloned from the moderate thermophile Bacillus licheniformis strain B-41361. The primary structure of the translated cel5A gene predicts a 49 amino acid putative secretion signal and a 485 residue endoglucanase consisting of an N-terminal family 5 catalytic domain and C-terminal family 3 cellulose binding domain. The endoglucanase portion of the gene was expressed in Escherichia coli, but soluble activity in cell lysates was due to a truncated enzyme with an apparent mass of 42 kDa, the equivalent of the predicted catalytic domain. Insoluble protein renatured from inclusion bodies was protected against truncation, yielding an active holoenzyme (rCel5A) with apparent mass of 62 kDa. The recombinant rCel5A was optimally active at 65 °C and pH 6.0, but retained only 10% activity after 1 h incubation at this temperature. At 55 °C, rCel5A had a broad pH range for activity and stability, with greater than 75% relative activity from pH 4.5–7.0, and retaining greater than 80% relativity activity across the range pH 4.5–8.0 following 1 h incubation at 55 °C. It readily hydrolyzed pNPC, carboxymethylcellulose, barley β-glucan, and lichenan, but despite binding to cellulose, had only weak activity against avicel. Hydrolysis products from soluble polysaccharides included glucose, cellobiose, cellotriose, and cellotetraose. The catalytic properties, broad pH range and thermostability of the recombinant B. licheniformis endoglucanase may prove suitable for industrial applications.  相似文献   

17.
A sporulating, aerobic Bacillus sp., isolated from Chimanimani hot springs, Zimbabwe, produced endoglucanase when cultured on medium with initial pH between 5.0 and 9.0 and at 30 to 60°C. Optimal production of endoglucanase was at pH 6.0. The enzyme was constitutively produced when the organism was cultured on starch, cellobiose, carboxymethylcellulose, sucrose, glucose, galactose, Avicel, lactose, mannose or maltose.The authors are with the Fermentation and Food Group, Department of Biochemistry, University of Zimbabwe, Box MP 167, Mount Pleasant, Harare, Zimbabwe  相似文献   

18.
Strains of thermophilic bacilli were screened for cellulolytic activity by gel diffusion assay on selective medium at 55°C. Strain B-41361, identified as a strain of Bacillus licheniformis, displayed activity against carboxymethylcellulose. Zymogram analysis demonstrated several catalytically active polypeptides with the most prominent species having a mass of 37 kDa. The enzyme was purified 60-fold with a 17% yield and specific activity of 183 U/mg. The amino terminal sequence was homologous to members of glycoside hydrolase family 5. Optimal temperature was 65°C (measured over 30 min), but the enzyme was most stable at 60°C, retaining greater than 90% activity after one hour. The enzyme had a broad pH range, with maximal activity at pH 6.0, 75% maximal activity at pH 4.5, and 40% at pH 10. The enzyme hydrolyzed p-nitrophenylcellobioside, barley β-glucan, and lichenan, but no activity was detected against avicel or acid-swollen cellulose.Mention of a trade name or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture.  相似文献   

19.
The enzymatic access to nucleotide-activated oligosaccharides by a glycosidase-catalyzed transglycosylation reaction was explored. The nucleotide sugars UDP-GlcNAc and UDP-Glc were tested as acceptor substrates for beta-galactosidase from Bacillus circulans using lactose as donor substrate. The UDP-disaccharides Gal(beta1-4)GlcNAc(alpha1-UDP) (UDP-LacNAc) and Gal(beta1-4)Glc(alpha1-UDP) (UDP-Lac) and the UDP-trisaccharides Gal(beta1-4)Gal(beta1-4)GlcNAc(alpha1-UDP and Gal(beta1-4)Gal(beta1-4)Glc(alpha1-UDP) were formed stereo- and regioselectively. Their chemical structures were characterized by 1H and 13C NMR spectroscopy and fast atom bombardment mass spectrometry. The synthesis in frozen solution at -5 degrees C instead of 30 degrees C gave significantly higher product yields with respect to the acceptor substrates. This was due to a remarkably higher product stability in the small liquid phase of the frozen reaction mixture. Under optimized conditions, at -5 degrees C and pH 4.5 with 500 mM lactose and 100 mM UDP-GlcNAc, an overall yield of 8.2% (81.8 micromol, 62.8 mg with 100% purity) for Gal(beta1-4)GlcNAc(alpha1-UDP) and 3.6% (36.1 micromol, 35 mg with 96% purity) for Gal(beta1-4)Gal(beta1-4)GlcNAc(alpha1-UDP) was obtained. UDP-Glc as acceptor gave an overall yield of 5.0% (41.3 micromol, 32.3 mg with 93% purity) for Gal(beta1-4)Glc(alpha1-UDP) and 1.6% (13.0 micromol, 12.2 mg with 95% purity) for Gal(beta1-4)Gal(beta1-4)Glc(alpha1-UDP). The analysis of other nucleotide sugars revealed UDP-Gal, UDP-GalNAc, UDP-Xyl and dTDP-, CDP-, ADP- and GDP-Glc as further acceptor substrates for beta-galactosidase from Bacillus circulans.  相似文献   

20.
In this work, we investigated the production of transglutaminase (TGase) by an Amazonian isolated strain of Bacillus circulans by solid-state cultivation (SSC). Several agro-industrial residues, such as untreated corn grits, milled brewers rice, industrial fibrous soy residue, soy hull, and malt bagasse, were used as substrates for microbial growth and enzyme production. Growth on industrial fibrous soy residue, which is rich in protein and hemicellulose, produced the highest TGase activity (0.74 U g−1 of dried substrate after 48 h of incubation). A 23 central composite design was applied to determine the optimal conditions of aeration, cultivation temperature and inoculum cell concentration to TGase production. The best culture conditions were determined as being 0.6 L air min−1, 33 °C and 10 log 10 CFU g−1 of dried substrate, respectively. Under the proposed optimized conditions, the model predicted an enzyme production of 1.16 U g−1 of dried substrate, closely matching the experimental activity of 1.25 U g−1. Results presented in this work point to the use of this newly isolated B. circulans strain as a potential alternative of microbial source for TGase production by SSC, using inexpensive culture media.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号