首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Crl stimulates RpoS activity during stationary phase   总被引:7,自引:2,他引:7  
  相似文献   

2.
We analysed complexes formed during recognition of the lacUV5 promoter by E. coli RNA polymerase using formaldehyde as a DNA-protein and protein-protein cross-linking reagent. Most of the cross-linked complexes specific for the open complex (RPO) contain the beta' subunit of RNA polymerase cross-linked with promoter DNA in the regions: -50 to -49; -5 to -10; + 5 to +8 and +18 to +21. The protein-protein cross-linking pattern of contacting subunits is the same for the RNA polymerase in solution and in RPO: there are strong sigma-beta' and beta-beta' interactions. In contrast, only beta-beta' cross-links were detected in the closed (RPC) and intermediate (RPI) complexes. In presence of lac repressor before or after formation of the RPO cross-linking pattern is similar with that of RPI (RPC) complex.  相似文献   

3.
Ribosome bound RNA-dependent RNA polymerase activity from immature chicken erythrocytes was shown to be predominantly primer-dependent, in contrast to the template-dependent synthesis demonstrated by previous workers (4). During the maturation of the immature avian erythrocyte, the total and specific activities of this ribosome bound enzyme preparation increase 40 and 9.4 times respectively.  相似文献   

4.
Previous work has indicated that loss of ability of DNA dependent RNA polymerase, from stationary phase cultures of B. subtilis, to transcribe phage øe DNA was a sine qua non for sporulation. To ascertain if this change in template specificity was sporulation-specific, we repeated these experiments using a defined sporulation medium. The changes observed previously did not occur in the defined medium although sporulation was normal. The ability of the enzyme to transcribe other DNA templates was also examined. Similar studies were carried out using a polymerase from a rifamycin-resistant, sporulation conditional mutant. The significance of these findings with regard to the regulation of sporulation in B. subtilis is discussed.  相似文献   

5.
The effect of normal growth (hypertrophy) on myocardial nuclear activity was investigated using male Wistar rats at 21, 50, and 100 days of age. Cardiac mass increased sevenfold during this age range. The concentration of RNA (mg X g-1) was the highest at 21 days and decreased 48% by 50 days of age and 68% after 100 days of development. RNA synthesis, corrected for alterations in the specific activity of the cytoplasmic nucleotide pool, was the highest at 21 days of age. After 50 days of growth, uridine incorporation was decreased fivefold. With continual growth (100 days), RNA synthesis was still reduced compared with the 21-day animals. RNA polymerase activity in myocyte nuclei showed little change in activity from 21 to 100 days of age. However, in the nonmyocyte fraction, RNA polymerase decreased threefold after 50 days of development. Collectively, these data suggest that the large decrease in myocardial RNA synthesis cannot be accounted for by a change in nuclear RNA polymerase activity and that an alteration in chromatin template capacity may be involved during this form of cardiac growth.  相似文献   

6.
6S RNA regulates E. coli RNA polymerase activity   总被引:13,自引:0,他引:13  
Wassarman KM  Storz G 《Cell》2000,101(6):613-623
The E. coli 6S RNA was discovered more than three decades ago, yet its function has remained elusive. Here, we demonstrate that 6S RNA associates with RNA polymerase in a highly specific and efficient manner. UV crosslinking experiments revealed that 6S RNA directly contacts the sigma70 and beta/beta' subunits of RNA polymerase. 6S RNA accumulates as cells reach the stationary phase of growth and mediates growth phase-specific changes in RNA polymerase. Stable association between sigma70 and core RNA polymerase in extracts is only observed in the presence of 6S RNA. We show 6S RNA represses expression from a sigma70-dependent promoter during stationary phase. Our results suggest that the interaction of 6S RNA with RNA polymerase modulates sigma70-holoenzyme activity.  相似文献   

7.
8.
DNA-directed RNA polymerase from Escherichia coli can break down RNA by catalysing the reverse of the reaction: NTP + (RNA)n = (RNA)n+1 + PPi where n indicates the number of nucleotide residues in the RNA molecule, to yield nucleoside triphosphates. This reaction requires the ternary complex of the polymerase with template DNA and the RNA that it has synthesized. It is now shown that methylenebis(arsonic acid) [CH2(AsO3H2)2], arsonomethylphosphonic acid (H2O3As-CH2-PO3H2) and arsonoacetic acid (H2O3As-CH2-CO2H) can replace pyrophosphate in this reaction. When they do so, the low-Mr products of the reaction prove to be nucleoside 5'-phosphates, so that the arsenical compounds endow the polymerase with an artificial exonuclease activity, an effect previously found by Rozovskaya, Chenchik, Tarusova, Bibilashvili & Khomutov [(1981) Mol. Biol. (Moscow) 15, 636-652] for phosphonoacetic acid (H2O3P-CH2-CO2H). This is explained by instability of the analogues of nucleoside triphosphates believed to be the initial products. Specificity of recognition of pyrophosphate is discussed in terms of the sites, beta and gamma, for the -PO3H2 groups of pyrophosphate that will yield P-beta and P-gamma of the nascent nucleoside triphosphate. Site gamma can accept -AsO3H2 in place of -PO3H2, but less well; site beta can accept both, and also -CO2H. We suggest that partial transfer of an Mg2+ ion from the attacking pyrophosphate to the phosphate of the internucleotide bond of the RNA may increase the nucleophilic reactivity of the pyrophosphate and the electrophilicity of the diester, so that the reaction is assisted.  相似文献   

9.
relA-dependent RNA polymerase activity in Escherichia coli.   总被引:9,自引:7,他引:2       下载免费PDF全文
  相似文献   

10.
11.
12.
13.
We previously reported that virus-specific particles with polycytidylate [poly(C)]-dependent RNA polymerase activity accumulated at 30 degrees C in reovirus-infected cells. These particles sedimented heterogeneously from 300 to 550S and traversed through a 40% glycerol cushion to the pellet in 3 h at 190,000 x g. In the present report, we found that smaller particles with poly(C)-dependent RNA polymerase activity remained in the glycerol cushion. These smaller, enzymatically active particles, when purified, sedimented at 15 to 1S. They were spherical or triangular with a diameter of 11 to 12 nm. They were comprised mostly, and likely solely, of one reovirus protein, sigma NS. No particles with poly(C)-dependent RNA polymerase activity were found in mock-infected cells. Chromatography on the cation exchanger, CM-Sephadex, ascertained that sigma NS was the poly(C)-dependent RNA polymerase and showed its existence in two forms. In one form, it was enzymatically active and eluted from the column at 0.5 M KCl. In the enzymatically inactive state, it did not bind to the column. Our results suggest that the enzymatically active form of sigma NS carries a greater net positive charge than the inactive form. They also suggest that both forms of sigma NS are associated with a particle which has poly(C)-dependent RNA polymerase activity.  相似文献   

14.
15.
16.
RNA synthesis was studied in Bacillus subtilis Cgr4 grown in the mineral sporulation medium enriched with glucose up to 2% and amino acids up to 1%. To study mRNA synthesis, a method of transfer of the 3H-uridine pulse-labeled culture to the supernatant of physiologically identical, not labeled culture, followed by further incubation was used, the amount of 3H-uridine in the supernatant as well as in cells being measured. RNA was also analysed electrophoretically and distribution of the label among the fractions was determined. It is shown that mRNA synthesized in the logarithmic phase degrades up to 12% on the 2nd hour of growth during 10 min; the mRNA in the stationary phase is stable on the 7th hour of growth; no degradation is observed in the course of 2-3 hours. The beginning of degradation coincides in time with secondary induction of the synthesis of serine proteases and with the onset of sharp decrease in incorporation of 3H-uridine in RNA as well as with induction of spore morphogenesis. On the basis of electrophoretical analysis of pulse-labeled RNA, it was demonstrated that, prior to the transfer, labeled uridine was included and preserved in RNA fraction for 2-3 hours after the transfer, this fraction corresponding in mobility with mRNA in polyacrylamide gel. The following conclusion may be drawn: stable mRNAs are synthesized in the stationary phase and may be used for the translation of extracellular serine protease.  相似文献   

17.
18.
19.
Washed mature spermatozoa from bulls incorporate ribonucleoside triphosphates into RNA using an endogenous template. Maximum incorporation was observed at 31 degrees C in the presence of MgCl2, all four ribonucleoside triphosphates, beta-mercaptoethanol, and glycine sodium hydroxide buffer at pH 9.0. The amount of synthesis was linearly dependent upon the concentration of spermatozoa and continued for at least 4 h. Digestion studies revealed the RNA to be present in a protected (intracellular?) location in the spermatozoa. The RNA synthesis was inhibited by ethidium bromide, rifampicin, acriflavine, actinomycin D, and caffeine, but not by alpha-amanitine or rifamycin SV. Fractionation of the spermatozoa by sonication and separation of the heads and tails by centrifugation through a discontinuous gradient revealed that more than half of the total RNA polymerase activity was associated with the tail fraction.  相似文献   

20.
Barbara Mazuś 《Phytochemistry》1973,12(12):2809-2813
A gradual decrease in the total activity of DNA-dependent RNA polymerase in isolated wheat embryos began 6 hr after germination and continued for up to 48 hr. DEAE-cellulose column chromatography indicated the presence of two RNA polymerase fractions (major and minor) in the resting embryos, only one of which (major) could be detected in the embryos germinated for 48 hr. The major RNA polymerase fraction was tentatively identified as nucleoplasmic (RNA polymerase II).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号