首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract Sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE) followed by immunoblotting was employed to detect intracellular precursors of endo-β-1,4-glucanases (EGs) in Trichoderma reesei QM9414 under conditions of de novo induction by sophorose and de novo carbon catabolite derepression by lactose. Secretion of EGs was always preceded by intracellular accumulation of lower M r precursors, which became processed to larger M r forms immediately prior to their extracellular appearance. Treatment of the larger M r forms with α-mannosidase converted them to forms with the same M r as the smaller forms, whereas Endo H treatment was without effect. These results are consistent with a requirement of O -linked glycosylation for secretion of EGs by T. reesei .  相似文献   

2.
The induction of endo-1,4-beta-glucanase synthesis by Trichoderma reesei QM 9414 was investigated in conidia, mycelia and protoplasts. Cellulose induced endoglucanase synthesis only in conidia, but not in glucose-grown mycelia or protoplasts. Cellooligosaccharides and sophorose induced endoglucanase synthesis in mycelia, conidia and protoplasts. Only conidia exhibited detectable basal endoglucanase levels, whereas beta-glucosidase activity was found in conidia, mycelia and protoplasts. The beta-glucosidase was inhibited in vitro by nojirimycin and glucono-delta-lactone. Addition of either of these inhibitors to the induction medium blocked de noro synthesis of endo-1,4-beta-glucanase with cellulose (conidia) or cellooligosaccharides (protoplasts and mycelia) as inducer, whereas induction by sophorose remained unaffected. The results are consistent with the assumption that basal constitutive levels of endoglucanase and beta-glucosidase are involved in the induction of cellulase synthesis by cellulose in T. reesei.  相似文献   

3.
Basic features of regulation of expression of the genes encoding the cellulases of the filamentous fungus Trichoderma reesei QM9414, the genes cbh1 and cbh2 encoding cellobiohydrolases and the genes egl1, egl2 and egl5 encoding endoglucanases, were studied at the mRNA level. The cellulase genes were coordinately expressed under all conditions studied, with the steady-state mRNA levels of cbh1 being the highest. Solka floc cellulose and the disaccharide sophorose induced expression to almost the same level. Moderate expression was observed when cellobiose or lactose was used as the carbon source. It was found that glycerol and sorbitol do not promote expression but, unlike glucose, do not inhibit it either, because the addition of 1 to 2 mM sophorose to glycerol or sorbitol cultures provokes high cellulase expression levels. These carbon sources thus provide a useful means to study cellulase regulation without significantly affecting the growth of the fungus. RNA slot blot experiments showed that no expression could be observed on glucose-containing medium and that high glucose levels abolish the inducing effect of sophorose. The results clearly show that distinct and clear-cut mechanisms of induction and glucose repression regulate cellulase expression in an actively growing fungus. However, derepression of cellulase expression occurs without apparent addition of an inducer once glucose has been depleted from the medium. This expression seems not to arise simply from starvation, since the lack of carbon or nitrogen as such is not sufficient to trigger significant expression.  相似文献   

4.
Three immunologically and enzymatically distinct endoglucanases of Cellulomonas sp. ATCC 21399 were purified previously. Endoglucanase A and endoglucanase B acted synergistically on microcrystalline cellulose (Avicel), whereas no synergistic action was observed between endoglucanase B or endoglucanase C. Only endoglucanase A was capable of hydrolyzing Avicel when acting alone and this enzyme resulted in "short fiber formation" when acting on Avicel. The end product of hydrolysis of acid swollen Avicel produced by the three endoglucanases was in all cases dominated by cellobiose and showed lower content of glucose and cellotriose. Higher cellodextrins appeared as transient end products. The results indicate that the function of endoglucanase A in the cellulase system of Cellulomonas might be very similar to the function of the cellobiohydrolases of Trichoderma reesei.  相似文献   

5.
Studies on reconstituted mixtures of extensively purified cellobiohydrolases I and II and the five major endoglucanases of the fungus Penicillium pinophilum have provided some new information on the mechanism by which crystalline cellulose in the form of the cotton fibre is rendered soluble. It was observed that there was little or no synergistic activity either between purified cellobiohydrolases I and II, or, contrary to previous findings, between the individual cellobiohydrolases and the endoglucanases. Cotton fibre was degraded to a significant degree only when three enzymes were present in the reconstituted enzyme mixture: these were cellobiohydrolases I and II and some specific endoglucanases. The optimum ratio of the cellobiohydrolases was 1:1. Only a trace of endoglucanase activity was required to make the mixture of cellobiohydrolases I and II effective. The addition of cellobiohydrolases I and II individually to endoglucanases from other cellulolytic fungi resulted in little synergistic activity; however, a mixture of endoglucanases and both cellobiohydrolases was effective. It is suggested that current concepts of the mechanism of cellulase action may be the result of incompletely resolved complexes between cellobiohydrolase and endoglucanase activities. It was found that such complexes in filtrates of P. pinophilium or Trichoderma reesei were easily resolved using affinity chromatography on a column of p-aminobenzyl-1-thio-beta-D-cellobioside.  相似文献   

6.
《Experimental mycology》1992,16(4):253-260
Regulation of endoglucanase formation by the brown-rot fungusGloeophyllum trabeum was investigated. This fungus produced endoglucanases in the presence of monosaccharides such as glucose or mannose as the sole carbon source, but the expression of these enzymes was four to five times higher in the presence of cellulose or cellobiose. In a lactose- or glucose-containing medium, endoglucanase production was induced by cellobiose. Glucose and glycerol did not repress enzyme production. We concluded that endoglucanase production by brown-rot fungi is inducible by cellulose and not subject to catabolite repression. Cellobiose is the most effective inducer of the system.  相似文献   

7.
8.
Crystalline cellulase has been electrochemically oxidized to yield preparations containing various different percentages of oxidized end-groups. These celluloses have been used as carbon sources for growth and cellulase production by Trichoderma reesei . A low content of oxidized end groups in the celluloses (0.1–0.65%) stimulated cellulase production but not growth, whereas higher contents (> 1%) where inhibitory to both. The cellulolytic enzyme system secreted under stimulated conditions contained the same proportion of individual cellulase enzymes (cellobiohydrolase I and II, endoglucanase I) as the control, indicating a general stimulatory effect of oxidized cellulose. Activity of cellulases against oxidized celluloses in vitro was not stimulated, and only slightly inhibitory at high degrees of oxidation. The data support a potential role of cellulose oxidation in regulating cellulase formation by T. reesei .  相似文献   

9.
10.
11.
Three thermostable neutral cellulases from Melanocarpus albomyces, a 20-kDa endoglucanase (Cel45A), a 50-kDa endoglucanase (Cel7A), and a 50-kDa cellobiohydrolase (Cel7B) heterologously produced in a recombinant Trichoderma reesei were purified and studied in hydrolysis (50 degrees C, pH 6.0) of crystalline and amorphous cellulose. To improve their efficiency, M. albomyces cellulases naturally harboring no cellulose-binding module (CBM) were genetically modified to carry the CBM of T. reesei CBHI/Cel7A, and were studied under similar experimental conditions. Hydrolysis performance and product profiles were used to evaluate hydrolytic features of the investigated enzymes. Each cellulase proved to be active against the tested substrates; the cellobiohydrolase Cel7B had greater activity than the endoglucanases Cel45A and Cel7A against crystalline cellulose, whereas in the case of amorphous substrate the order was reversed. Evidence of synergism was observed when mixtures of the novel enzymes were applied in a constant total protein dosage. Presence of the CBM improved the hydrolytic potential of each enzyme in all experimental configurations; it had a greater effect on the endoglucanases Cel45A and Cel7A than the cellobiohydrolase Cel7B, especially against crystalline substrate. The novel cellobiohydrolase performed comparably to the major cellobiohydrolase of T. reesei (CBHI/Cel7A) under the applied experimental conditions.  相似文献   

12.
Two endoglucanase-containing fractions were separated from Aspergillus niger cellulase by gel filtration and fast protein liquid chromatofocusing (FPLC). They possessed no ability to bind to or hydrolyze insoluble microcrystalline cellulose (Avicel) but were active toward soluble carboxymethylcellulose. No synergism was observed between Trichoderma reesei cellobiohydrolase I and either endoglucanase from A. niger. These findings may indicate that the role of the endoglucanase component of cellulase in insoluble microcrystalline cellulose hydrolysis is dependent upon its ability to be adsorbed upon the substrate.  相似文献   

13.
Effects of recycling ECF-bleached softwood kraft pulp on pulp properties were evaluated in the laboratory. The tensile strength, fiber flexibility and WRV lost during drying of the pulp were recovered by refining between the cycles which, however, resulted in deteriorated drainage properties. The recycled pulps were treated with purified Trichoderma reesei cellulases and hemicellulases and the changes in fiber properties due to enzymatic treatments were characterized. The endoglucanases (EG I and EG II) significantly improved pulp drainage already at low dosage levels, and EG II was found to be more effective at a given level of carbohydrate solubilization. Combining hemicellulases with the endoglucanase treatments increased the positive effects of the endoglucanases on pulp drainage. However, as a result of the endoglucanase treatments a slight loss in strength was observed. Combining mannanase with endoglucanase treatments appeared to increase this negative effect, whereas the impact of xylanase was not significant. Although the drainage properties of the pulps could be improved by selected enzymes, the water retention capacity of the dried hornified fibers could not be recovered by any of the enzymes tested.  相似文献   

14.
Induction of synthesis of cellulolytic enzymes in Trichoderma reesei QM 9414 by cellobiono-1,5-lactone (CBL) has been investigated in a replacement system lacking additional carbon source. CBL induced cellulase secretion optimally at pH 5 and a concentration of 70 g/ml. Higher concentrations lead to lower induction. De novo induction of cellulases was proven by the inhibitory effect of cycloheximide addition. Induction by CBL was shown to act synergistically on induction by sophorose, as it decreased the concentration of sophorose required for maximal induction. Maximal endo--1,4-glucanase activities induced by either sophorose or CBL were comparable. The CBL-induced cellulase system contained all the major cellulolytic enzymes of T. reesei, i.e. cellobiohydrolase I and II, and endoglucanase I, as shown by SDS-PAGE, Western blotting and detection with specific mono- and polyclonal antibodies. No differences were seen in the types of individual enzymes formed upon induction by either sophorose or CBL. No other hydrolytic enzymes appear to be induced by CBL (i.e. amylase, laminarinase, xylanase).Abbreviations SDS-PAGE polyacrylamide gel electrophoresis in the presence of sodium-dodecylsulfate - CBL cellobiono-1,5-lacton - CBH cellobiohydrolase - EG endoglucanase - IgG immunoglobulin G  相似文献   

15.
From the culture filtrate of Trichoderma reesei we have isolated a novel endoglucanase (38 kDa) which was shown to be identical to endoglucanase III (E III, 50 kDa), but lacking the first 61 N-terminal amino acids. This core protein, designated E III core, is fully active against soluble substrates, such as carboxymethylcellulose, whereas both activity against and adsorption to microcrystalline cellulose (Avicel) is markedly decreased. Sedimentation velocity experiments revealed that the intact E III enzyme has much higher asymmetry than the E III core protein, suggesting that the N-terminal region split off constitutes a protruding part of the native enzyme. These results lead to the proposal that native E III consists of two functionally separated domains: a catalytically active core and a protruding N-terminal domain which acts in the binding to insoluble cellulose. The N-terminal peptide missing in E III core corresponds to the heavily glycosylated common structural element found also in the N-terminus of cellobiohydrolase II and in the C-termini of cellobiohydrolase I and endoglucanase I. A similar bifunctional organization could thus be the rule for Trichoderma cellulases, endoglucanases as well as cellobiohydrolases.  相似文献   

16.
The endoglucanase activity of cells and extracellular culture fluid of Fibrobacter succinogenes S85 grown on glucose, cellobiose, soluble polysaccharides (beta-glucan, lichenan) and intact plant polysaccharides, was compared. The specific activity of cells grown on cellulose or forages was 6- to 20-fold higher than that of cells grown on soluble substrates, suggesting an induction of endoglucanases by the insoluble substrates. The ratios of cells to extracellular culture fluid endoglucanase activities measured in cultures grown on sugars or insoluble polysaccharides suggested that the endoglucanases induced by the insoluble polysaccharides remained attached to the cells. The mRNA of all the F. succinogenes glycoside hydrolase genes sequenced so far were then quantified in cells grown on glucose, cellobiose or cellulose. The results show that all these genes were transcribed in growing cells, and that they are all overexpressed in cultures grown on cellulose. Endoglucanase-encoding endB and endA(FS) genes, and xylanase-encoding xynC gene appeared the most expressed genes in growing cells. EGB and ENDA are thus likely to play a major role in cellulose degradation in F. succinogenes.  相似文献   

17.
Toward a better understanding of the biochemical events that lead to biocontrol of plant pathogenic fungi by Hypocrea/Trichoderma spp., we investigated the importance of carbon catabolite (de)repression and cellulase formation in the antagonization of Pythium ultimum by Hypocrea jecorina (Trichoderma reesei) on agar plates and in planta. Hypocrea jecorina QM9414 could antagonize and overgrow P. ultimum but not Rhizoctonia solani in plate confrontation tests, and provided significant protection of zucchini plants against P. ultimum blight in planta. A carbon catabolite derepressed cre1 mutant of H. jecorina antagonized P. ultimum on plates more actively and increased the survival rates of P. ultimum-inoculated zucchini plants in comparison with strain QM9414. A H. jecorina mutant impaired in cellulase induction could also antagonize P. ultimum on plates and provided the same level of protection of zucchini plants against P. ultimum as strain QM9414 did. We conclude that cellulase formation is dispensable for biocontrol of P. ultimum, whereas carbon catabolite derepression increases the antagonistic ability by apparently acting on other target genes.  相似文献   

18.
Derepressed synthesis of cellulase by Cellulomonas.   总被引:15,自引:4,他引:11       下载免费PDF全文
A Cellulomonas sp. was isolated from the soil which hydrolyzed cellulose, as shown by clear-zone formation on cellulose agar medium. Catabolite repression of cellulase synthesis occurred when moderate levels of glucose were added to the medium. A stable mutant that no longer exhibits catabolite repression was produced through treatment of the wild-type organism with N-methyl-N'-nitro-N-nitrosoguanidine. Both enzyme concentration and specific activity, as determined by the rate of hydrolysis of carboxymethylcellulose, were greater with the mutant than with the wild-type organism under various test conditions. The wild type had no measurable cellulase activity when grown in the presence of either 1.0% glucose or cellobiose. Cellobiose, but not glucose, inhibited enzyme activity towards both cellulose and carboxymethylcellulose. Cellobiose, cellulose, and sophorose at low concentrations induced cellulase synthesis in both the wild-type and the mutant organism. Cellulase regulation appears to depend upon a complex relationship involving catabolite repression, inhibition, and induction.  相似文献   

19.
Cellobiose may exert different effects on the activities of various endoglucanases. The endoglucanases of T. reesei and Rapidase are noticeably suppressed by cellobiose at concentrations above 3 mM. On the other hand, a low molecular weight endoglucanase from T. koningii is activated by cellobiose, whereas high molecular weight endoglucanases from the same source are inhibited by cellobiose. A detailed kinetic analysis of the effects showed that the low molecular weight endoglucanase is activated by a transglycosylation mechanism, in which cellobiose acts as an additional nucleophile. At saturating concentrations of cellobiose (Ks = 15 mM) the enzyme activity is increased 6-fold. Such a specific mechanism of activation manifests itself in an acceleration of random cleavage of CM-cellulose by the low molecular weight endoglucanase, which can be recorded by a viscosimetric technique. However, its action does not accelerate the production of soluble reducing sugars.  相似文献   

20.
Cellobiohydrolase 58 (Cel7D) is the major cellulase produced by the white-rot fungus Phanerochaete chrysosporium, constituting approximately 10 % of the total secreted protein in liquid culture on cellulose. The enzyme is classified into family 7 of the glycosyl hydrolases, together with cellobiohydrolase I (Cel7A) and endoglucanase I (Cel7B) from Trichoderma reesei. Like those enzymes, it catalyses cellulose hydrolysis with net retention of the anomeric carbon configuration.The structure of the catalytic module (431 residues) of Cel7D was determined at 3.0 A resolution using the structure of Cel7A from T. reesei as a search model in molecular replacement, and ultimately refined at 1.32 A resolution. The core structure is a beta-sandwich composed of two large and mainly antiparallel beta-sheets packed onto each other. A long cellulose-binding groove is formed by loops on one face of the sandwich. The catalytic residues are conserved and the mechanism is expected to be the same as for other family members. The Phanerochaete Cel7D binding site is more open than that of the T. reesei cellobiohydrolase, as a result of deletions and other changes in the loop regions, which may explain observed differences in catalytic properties. The binding site is not, however, as open as the groove of the corresponding endoglucanase. A tyrosine residue at the entrance of the tunnel may be part of an additional subsite not present in the T. reesei cellobiohydrolase.The Cel7D structure was used to model the products of the five other family 7 genes found in P. chrysosporium. The results suggest that at least two of these will have differences in specificity and possibly catalytic mechanism, thus offering some explanation for the presence of Cel7 isozymes in this species, which are differentially expressed in response to various growth conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号