首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The purpose of this work is to present a method for the calculation of secondary electron spectra generated by photons in water vapour in the energy region from 10 eV to 10 MeV. The cross sections below and above 1 keV have been treated separately. Examples are given for secondary electron spectra for low-energy photons, <100 eV, in which all electrons are photoelectrons, and at higher energy regions, such as for 60Co photons. The spectrum of the first generation of secondary electrons, produced by 60Co photons, which are mainly due to incoherent scattering, was fitted with a set of polynomial functions which can be used as input for electron radiation action calculations.  相似文献   

2.
This paper presents data on modelling of DNA damage induced by electrons, protons and alpha-particles to provide an insight into factors which determine the biological effectiveness of radiations of high and low linear energy transfer (LET). These data include the yield of single- and double-strand breaks (ssb, dsb) and base damage in a cellular environment. We obtain a ratio of 4–15 for ssb:dsb for solid and cellular DNA and a preliminary ratio of about 2 for base damage to strand breakage. Data are also given on specific characteristics of damage at the DNA level in the form of clustered damage of varying complexity, that challenge the repair processes and if not processed adequately could lead to the observed biological effects. It is shown that nearly 30% of dsb are of complex form for low-LET radiation, solely by virtue of additional breaks, rising to about 70% for high-LET radiation. Inclusion of base damage increases the complex proportion to about 60% and 90% for low- and high-LET radiation, respectively. The data show a twofold increase in frequencies of complex dsb from low-LET radiation when base damage is taken into account. It is shown that most ssb induced by high-LET radiation have associated base damages, and also a substantial proportion is induced by low-energy electrons. Received: 20 September 1998 / Accepted in revised form: 15 December 1998  相似文献   

3.
The yield of DNA double-strand breaks (dsb) and DNA complex lesions induced by protons and α-particles of various energies was simulated using a Monte Carlo track structure code (MOCA15) and a simple model of the DNA molecule. DNA breaks of different complexity were analysed. The linear energy transfer (LET) and particle-type dependence of lesions of higher complexity seems to confirm the importance of clustered damage in DNA as a relevant step leading to biological endpoints such as cell inactivation. The detailed structure of proton and α-particle tracks was analysed to identify the main characteristics possibly responsible for such a dependence. The role of the primary ion and of its secondary electrons in inducing dsb and complex lesions is described, showing that the relative contribution of secondary electron tracks alone in inducing clustered lesions is almost negligible at high LET, but tends to dominate below ≈10 keV/μm. This is consistent with the observed similar effectiveness of low-LET fast particle radiation and sparsely ionizing radiation such as x-rays. The dependence on LET and particle type is mainly due to energy deposition events of the primary ion together with short range electrons surrounding the ion track; the yield of complex lesions due to secondary electron tracks alone is substantially LET independent. The radial distributions of the energy contributing to the induction of complex lesions were analyzed and compared with the radial distributions of energy deposition of the full tracks. The results suggest that the stochastic behaviour (i.e. cluster properties) of the energy deposition pattern within a radius of a few nanometers around the ion track plays a relevant role in determining the biological radiation effectiveness. Received: 20 December 1996 / Accepted in revised form: 5 March 1997  相似文献   

4.
Experimental study of plasma produced at the nitrogen pressure 0.2–1 Pa in the chamber volume V ≈ 0.12 m3 as a result of injection into the chamber of a broad nitrogen molecule beam with 1–4 keV energy and 0.1–1 A equivalent current is carried out, and the study results are presented. Dependences of the plasma density distribution on the beam equivalent current I b , energy E b , and gas pressure p indicate a crucial role of fast molecules in gas ionization, and the probe characteristics reveal two groups of plasma electrons with the temperatures T e ∼ 0.4 eV and T e ∼ 16 eV. Immersion in plasma of an electrode isolated from the chamber and application to the electrode of a positive voltage U result in non-self-sustained discharge. When U changes from ∼0.5 to ∼1.5 V, the discharge current I rapidly rises to a certain value I*, and after that the rate of rise dI/dU drops by an order of magnitude. At U ∼ 10 V, the current I rises to I 0 ≈ 1.5I*, and dI/dU once again drops by an order of magnitude. Current I 0 specifies the number of electrons produced inside the chamber per second, and it grows up with E b , I b , and p. At U > 20 V, due to gas ionization by fast electrons emitted by the chamber and accelerated up to the energy ∼eU in the sheath between the plasma and the chamber walls, the current I rises again. When U grows up to ∼50 V, production of fast electrons with energies exceeding the ionization threshold begins inside the sheath, and the ionization intensity rises dramatically. At U > 150 V, contribution of fast electrons to gas ionization already exceeds the contribution of fast molecules, and the plasma density and its distribution homogeneity inside the chamber both grow up substantially. However, even in this case, the discharge is non-self-sustained, and only at U > 300 V it does not expire when the beam source is switched off.  相似文献   

5.
Electroweak parity violating interaction between supernova (SN) neutrinos and electrons of a simple chiral molecule is studied related to the origin of molecular homochirality. Appearance of supernova remnants inside molecular clouds favours the interaction of SN-neutrinos with interstellar molecules, leading to a energetic difference between the two enantiomers of the order of 10–5 eV. This energetic difference is closer to the thermic energy of the interstellar medium, so molecular homochirality could be enhanced in molecular clouds containing supernova remnants inside it due to neutrino interaction.  相似文献   

6.
The intermolecular interactions between Aun (n = 3–4) clusters and selected amino acids cysteine and glycine have been investigated by means of density functional theory (DFT). Present calculations show that the complexes possessing Au-NH2 anchoring bond are found to be energetically favored. The results of NBO and frontier molecular orbitals analysis indicate that for the complex with anchoring bonds, lone pair electrons of sulfur, oxygen, and nitrogen atoms are transferred to the antibonding orbitals of gold, while for the complex with the nonconventional hydrogen bonds (Au···H–O), the lone pair electrons of gold are transferred to the antibonding orbitals of O-H bonds during the interaction. Furthermore, the interaction energy calculations show that the complexes with Au-NH2 anchoring bond have relatively high intermolecular interaction energy, which is consistent with previous computational studies.  相似文献   

7.
In the framework of an extraterrestrial origin of biological homochirality, universal mechanisms are of particular interest. In this sense we consider the weak parity-violating neutrino-electron interaction through weak charged currents W ± between the relic flux of cosmological neutrinos and the electrons of a chiral molecule. We use the known theoretical result of the split in energy of the two helicity sates of an electron in the cosmic neutrino bath, due to weak charged currents. In the case that electrons of a chiral molecule are submitted to a helicoidal potential due to the nuclear conformation, these electrons have opposite helicities for the two enantiomers of the molecule and consequently the mentioned neutrino-electron interaction would produce a splitting in energy between the two enantiomers. An estimation of this energy for the case of a single electron yields a small value of the order of 10−26 eV. This value results amplified by the contribution of all the molecular electrons having helicity and other possible mechanisms.  相似文献   

8.
The explosive sensitivity upon the formation of molecule-cation interaction between the nitro group of 3,4-dinitropyrazole (DNP) and H+, Li+, Na+, Be2+ or Mg2+ has been investigated using the B3LYP and MP2(full) methods with the 6-311++G** and 6-311++G(2df,2p) basis sets. The bond dissociation energy (BDE) of the C3–N7 trigger bond has also been discussed for the DNP monomer and the corresponding complex. The interaction between the oxygen atom of nitro group and H+ in DNP…H+ is partly covalent in nature. The molecule-cation interaction and bond dissociation energy of the C3–N7 trigger bond follow the order of DNP…Be2+ > DNP…Mg2+ > DNP…Li+ > DNP…Na+. Except for DNP…H+, the increment of the trigger bond dissociation energy in comparison with the DNP monomer correlates well with the molecule-cation interaction energy, natural charge of the nitro group, electron density ρ BCP(C3–N7), delocalization energy E (2) and NBO charge transfer. The analyses of atoms in molecules (AIM), natural bond orbital (NBO) and electron density shifts have shown that the electron density of the nitro group shifts toward the C3–N7 trigger bond upon the formation of the molecule-cation interaction. Thus, the trigger bond is strengthened and the sensitivity of DNP is reduced.  相似文献   

9.
The analysis of kinetic and thermodynamic parameters of binding of peptide and nonpeptide dimerization inhibitors of HIV protease (HIVp) to the enzyme monomers immobilized on an optical chip has been studied by surface plasmon resonance. The molecular interactions were investigated at different inhibitor concentrations (0–80 μM) and temperatures (15–35°C). Determination of kinetic (k on, k off), equilibrium (K d), and thermodynamic (ΔG, ΔH, and -TΔS) has shown that both inhibitors are characterized by similar interaction parameters and the entropic term (-TΔS) of about −20 kcal/mol is the main driving force for the HIVp complex formation with the inhibitors, while the positive value (14 kcal/mol) of the enthalpic term (ΔH) counteracted the complex formation.  相似文献   

10.
Nothofagus nitida (Phil.) Krasser (Nothofagaceae) regenerates under the shade. Nonetheless, older seedlings are commonly found at full sun. We tested the hypothesis that light capture and photochemical and non-photochemical energy dissipation of both photosystems PSI and PSII adjust with ontogeny and brighter environment. Light energy partitioning in both photosystems was studied in seedlings of different developmental stages (small 9.7 cm, tall 36 cm) under contrasting light environments (8–200 and 1,800–2,043 μmol photons m−2 s−1) in the Chilean evergreen temperate forest. Higher A max, dark respiration, and light compensation and saturation points in sun seedlings of both developmental stages were accompanied by higher rates of electron transport. These seedlings also showed a high fraction of open PSII reaction centres and similar non-photochemical quenching at high-light in both photosystems, showing no effect of developmental stage in these parameters. Conversely, light capture, total thermal dissipation after photoinhibition, active down-regulation of antenna efficiency, and state transitions were higher in smaller seedlings than in taller ones. These changes maintain photostasis, preventing photodamage, while favouring a more oxidized quinone pool. There is an independent effect of seedling development and light acclimation on this transition from shade to sun during early ontogeny. This transition reflects short-term responses of the photosynthetic apparatus to light and longer term responses that depend on seedling developmental stage.  相似文献   

11.
A theoretical analysis of the nature of the interactions in dibenzo[24]crown-8 (DB24C8)-n-dibutylammonium (DBM)—pseudorotaxane complex at the MP2 and DFT levels shows that the main contribution to the binding energy is the electrostatic interaction with moderate (20–25%) correlation stabilization. The total binding energy in the DB24C8-DBM complex represents a sum of the binding energies of two NH–O and one CH–O hydrogen bonds and the latter constitutes about 25% of the total interaction energy, giving the total binding energy of −41.2 kcal mol−1 at the BHandHLYP/6-311++G** level. Deprotonation of the DB24C8-DBM complex reduces the binding energy by some 50 kcal mol−1, giving metastable complexes DB24C8-DBA-1 or DB24C8-DBA-2, which will dissociate to give free crown ether and n-dibutylamine because of the strong exchange repulsion that prevails in neutral complexes. Figure Formation of DB24C8-DBM pseudorotoxane complex  相似文献   

12.
Most biological processes are temperature dependent. To quantify the temperature dependence of biotic interactions and evaluate predictions of metabolic theory, we: 1) compiled a database of 81 studies that provided 112 measures of rates of herbivory, predation, parasitism, parasitoidy, or competition between two species at two or more temperatures; and 2) analyzed the temperature dependence of these rates in the framework of metabolic ecology to test our prediction that the “activation energy,”E, centers around 0.65 eV. We focused on studies that assessed rates or associated times of entire biotic interactions, such as time to consumption of all prey, rather than rates of components of these interactions, such as prey encounter rate. Results were: 1) the frequency distribution of E for each interaction type was typically peaked and right skewed; 2) the overall mean is E= 0.96 eV and median E= 0.78 eV; 3) there was significant variation in E within but not across interaction types; but 4) average values of E were not significantly different from 0.65 eV by interaction type and 5) studies with measurements at more temperatures were more consistent with E= 0.65 eV. These synthetic findings suggest that, despite the many complicating factors, the temperature‐dependence of rates of biotic interactions broadly reflect of rates of metabolism, a relationship with important implications for a warming world.  相似文献   

13.
Halogen bonding (XB) is a type of noncovalent interaction between a halogen atom X in one molecule and a negative site in another. X can be chlorine, bromine or iodine. The strength of the interaction increases in the order Cl<Br<I. After a brief review of experimental evidence relating to halogen bonding, we present an explanation for its occurrence in terms of a region of positive electrostatic potential that is present on the outermost portions of some covalently-bonded halogen atoms. The existence and magnitude of this positive region, which we call the σ-hole, depends upon the relative electron-attracting powers of X and the remainder of its molecule, as well as the degree of sp hybridization of the s unshared electrons of X. The high electronegativity of fluorine and its tendency to undergo significant sp hybridization account for its failure to halogen bond. Some computed XB interaction energies are presented and discussed. Mention is also made of the importance of halogen bonding in biological systems and processes, and in crystal engineering. Figure The computed B3PW91/6-31G(d,p) electrostatic potential, in kcal mol−1, on the 0.001 electrons/bohr3 surface of NC–C≡C–Cl. The chlorine atom is at the right. The color ranges are: red, more positive than 15; yellow between 7 and 15; green, between 0 and 7; blue, between −10 and 0; purple, more positive than −10. Proceedings of “Modeling Interactions in Biomolecules II”, Prague, September 5th–9th, 2005.  相似文献   

14.
One of the factors limiting the performance of organic solar cells (OSCs) is their large energy losses (E loss) in the conversion from photons to electrons, typically believed to be around 0.6 eV and often higher than those of inorganic solar cells. In this work, a novel low band gap polymer PIDTT‐TID with a optical gap of 1.49 eV is synthesized and used as the donor combined with PC71BM in solar cells. These solar cells attain a good power conversion efficiency of 6.7% with a high open‐circuit voltage of 1.0 V, leading to the E loss as low as 0.49 eV. A systematic study indicates that the driving force in this donor and acceptor system is sufficient for charge generation with the low E loss. This work pushes the minimal E loss of OSCs down to 0.49 eV, approaching the values of some inorganic and hybrid solar cells. It indicates the potential for further enhancement of the performance of OSCs by improving their V oc since the E loss can be minimized.  相似文献   

15.
The interaction effects between irradiance and temperature on growth rates ofNannochloropsis oceanicawere determined in both laboratory cultures and large-scale tubular photobioreactors. Growth responses were investigated in 48 batch cultures subjected to crossing light/temperature gradients ranging from 34–80μmol photons m−2s−1and 14.5–35.7C respectively. Comparisons were made to growth responses observed in production systems (200L biofences) operated in climate-regulated greenhouses with controlled temperature and artificial light gradients. Cellular responses showed increasing specific growth rates as a function of temperature, with a peak at 25–29C, after which the growth became increasingly unstable. The optimum temperature for growth increased with higher light intensities up to approximately 28C at 80μmol photons m−2s−1. At low light intensities the specific growth rate was less affected by temperature. The maximum daily production measured in the biofence systems increased proportionally with irradiation and reached approximately 0.7gL−1d−1at 1030μmol photons m−2s−1average daily radiation for a culture temperature of 24C. This corresponds to a daily yield of 140g per day in a 200L biofence system. When specific growth rates for the biofence cultures were measured at different densities and plotted against temperature, results showed a peak with the 24C temperature treatment. This peak became less pronounced as the density increased in the cultures. This is consistent with the laboratory results; increasing cell density in the biofence cultures resulted in less average light cell−1, which produced the same temperature dependent response as seen by reducing the external irradiance exposure for the dilute laboratory cultures.  相似文献   

16.
Direct comparisons between photosynthetic O2 evolution rate and electron transport rate (ETR) were made in situ over 24 h using the benthic macroalga Ulva lactuca (Chlorophyta), growing and measured at a depth of 1.8 m, where the midday irradiance rose to 400–600 μmol photons m−2 s−1. O2 exchange was measured with a 5-chamber data-logging apparatus and ETR with a submersible pulse amplitude modulated (PAM) fluorometer (Diving-PAM). Steady-state quantum yield ((Fm′−Ft)/Fm′) decreased from 0.7 during the morning to 0.45 at midday, followed by some recovery in the late afternoon. At low to medium irradiances (0–300 μmol photons m−2 s−1), there was a significant correlation between O2 evolution and ETR, but at higher irradiances, ETR continued to increase steadily, while O2 evolution tended towards an asymptote. However at high irradiance levels (600–1200 μmol photons m−2 s−1) ETR was significantly lowered. Two methods of measuring ETR, based on either diel ambient light levels and fluorescence yields or rapid light curves, gave similar results at low to moderate irradiance levels. Nutrient enrichment (increases in [NO3 ], [NH4 +] and [HPO4 2-] of 5- to 15-fold over ambient concentrations) resulted in an increase, within hours, in photosynthetic rates measured by both ETR and O2 evolution techniques. At low irradiances, approximately 6.5 to 8.2 electrons passed through PS II during the evolution of one molecule of O2, i.e., up to twice the theoretical minimum number of four. However, in nutrient-enriched treatments this ratio dropped to 5.1. The results indicate that PAM fluorescence can be used as a good indication of the photosynthetic rate only at low to medium irradiances. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
Cultures able to dechlorinate cis-1,2-dichloroethene (cDCE) were selected with ethene (3–20%, v/v) as the sole source of carbon and energy. One mixed culture (K20) could degrade cDCE (400 μmol l–1) or vinyl chloride (100 μmol l–1) in the presence of ethene (≤ 80 μmol l–1 and ≤ 210 μmol l–1, respectively). This culture consists of at least five bacterial strains. All five strains were able to degrade cDCE cometabolically in pure culture. The mixed culture K20 was highly tolerant against cDCE (up to 6 mmol l–1 in the liquid phase). Degradation of cDCE (200 μmol l–1) was not affected by the presence of trichloroethene (100 μmol l–1) or tetrachloroethene (100 μmol l–1). Transformation yields (Ty, defined as unit mass of chloroethene degraded per unit mass of ethene consumed) of the mixed culture K20 were relatively high (0.51 and 0.61 for cDCE and vinyl chloride, respectively). The yield for cDCE with ethene as auxiliary substrate was ninefold higher than any values reported with methane or methane/formate as auxiliary substrate. The viability of the cells of the mixed culture K20 (0.3 mg of cells ml–1) was unaffected by the transformation of ≤ 200 μmol l–1 cDCE in 300 min. Received: 9 March 1999 / Accepted: 21 July 1999  相似文献   

18.
Spectral and energy characteristics of nitrogen molecule radiation in dielectric barrier discharges in Ar-N2, Ar-N2-Cl2, and Ar-N2-Br2 mixtures were investigated experimentally. Small additives of molecular chlorine or bromine to an Ar-N2 mixture are found to increase the radiation intensity of the second positive system of nitrogen. The conditions at which the radiation spectrum predominantly consists of vibronic bands of this system are determined. Using a numerical model of plasmachemical processes, it is shown that, at electron temperatures typical of gas discharges (2–4 eV), a minor additive of molecular chlorine to an Ar-N2 mixture leads to an increase in the concentrations of electrons, positive ions, and metastable argon atoms. In turn, collisional energy transfer from metastable argon atoms to nitrogen molecules results in the excitation of the N2(C 3Π u ) state.  相似文献   

19.
Hot plasmas can be generated by fast and intense laser pulses ablating solids placed in vacuum. A Nd:Yag laser operating at the fundamental and second harmonics with 9-ns pulses (maximum energy of 900 mJ) focused on metallic surfaces produces high ablation yields of the order of μg/pulse and dense plasma that expands adiabatically at supersonic velocity along the normal to the target surface. The plasma emits neutral and charged particles. Charge states up to 10+ have been measured in heavy elements ablated with intensities of the order of 1010 W/cm2. The ion temperature of the plasma is evaluated from the ion energy distributions measured with an ion energy analyzer. The electron temperature is measured through Faraday cups placed at the end of long drift tubes by using time-of-flight technique. The neutral temperature is measured with a special mass quadrupole spectrometer placed along the normal to the target surface. The plasma temperature increases with the laser pulse intensity. The ion temperature reaches values of the order of 400 eV, the electron temperature is of the order of 1 keV for hot electrons and 0.1 eV for thermal electrons, and the neutral temperature is of the order of 200 eV. The experimental apparatus, the diagnostic techniques, and the procedures for the plasma temperature characterization will be presented and discussed in detail. Published in Russian in Fizika Plazmy, 2006, Vol. 32, No. 6, pp. 558–564. The text was submitted by the authors in English.  相似文献   

20.
The aim of this work was to select endophytic fungi from mangrove plants that produced antimicrobial substances. Minimal inhibitory concentrations (MIC) and minimal bactericidal concentrations (MBC) or minimal fungicidal concentrations (MFC) of crude extracts from 150 isolates were determined against potential human pathogens by a colorimetric microdilution method. Ninety-two isolates (61.3%) produced inhibitory compounds. Most of the extracts (28–32%) inhibited Staphylococcus aureus (MIC/MBC 4–200/64–200 μg ml−1). Only two extracts inhibited Pseudomonas aeruginosa (MIC/MBC 200/>200 μg ml−1). 25.5 and 11.7% inhibited Microsporum gypseum and Cryptococcus neoformans (MIC/MFC 4–200/8–200 μg ml−1 and 8–200/8–200 μg ml−1, respectively), while 7.5% were active against Candida albicans (MIC/MFC 32–200/32–200 μg ml−1). None of the extracts inhibited Escherichia coli. The most active fungal extracts were from six genera, Acremonium, Diaporthe, Hypoxylon, Pestalotiopsis, Phomopsis, and Xylaria as identified using morphological and molecular methods. Phomopsis sp. MA194 (GU592007, GU592018) isolated from Rhizophora apiculata showed the broadest antimicrobial spectrum with low MIC values of 8–32 μg ml−1against Gram-positive bacteria, yeasts and M. gypseum. It was concluded that endophytic fungi from mangrove plants are diverse, many produce compounds with antimicrobial activity and could be suitable sources of new antimicrobial natural products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号