首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Short interspersed elements (SINEs) and long interspersed elements (LINEs) are transposable elements in eukaryotic genomes that mobilize through an RNA intermediate. Understanding their evolution is important because of their impact on the host genome. Most eukaryotic SINEs are ancestrally related to tRNA genes, although the typical tRNA cloverleaf structure is not apparent for most SINE consensus RNAs. Using a cladistic method where RNA structural components were coded as polarized and ordered multistate characters, we showed that related structural motifs are present in most SINE RNAs from mammals, fishes and plants, suggesting common selective constraints imposed at the SINE RNA structural level. Based on these results, we propose a general multistep model for the evolution of tRNA-related SINEs in eukaryotes.  相似文献   

2.
It is believed that short interspersed elements (SINEs) are irreversibly inserted into genomes. We use this concept to try to deduce the evolution of whales using sequence and hybridization studies. The observation that microsatellites are associated with SINEs lead us to screen sequences surrounding cetacean microsatellites for artiodactyl-derived SINEs. Two sequences that were thought to be cetacean SINEs and the bovine SINE were aligned for comparison to sequences flanking microsatellites from ungulates. The bovine SINE was observed only in ruminants while CetSINE1 and 2 were found in mammals. Hybridization studies using these three SINEs revealed that CetSINE1 was found in all ungulates and cetaceans with the strongest hybridization signal observed in the hippopotamus and beluga; CetSINE2 hybridized to all ungulate suborders, while the bovine SINE was only observed in Ruminantia. It is proposed that these putative SINEs are not 'generic' SINEs but mammalian-wide interspersed repeats (MIRs). Caution is urged: what initially appears to be a SINE may instead be a MIR and have reduced evolutionary resolving power.  相似文献   

3.
Brassica oleracea and Arabidopsis thaliana belong to the Brassicaceae(Cruciferae) family and diverged 16 to 19 million years ago. Although the genome size of B. oleracea (approximately 600 million base pairs) is more than four times that of A. thaliana (approximately 130 million base pairs), their gene content is believed to be very similar with more than 85% sequence identity in the coding region. Therefore, this important difference in genome size is likely to reflect a different rate of non-coding DNA accumulation. Transposable elements (TEs) constitute a major fraction of non-coding DNA in plant species. A different rate in TE accumulation between two closely related species can result in significant genome size variations in a short evolutionary period. Short interspersed elements (SINEs) are non-autonomous retroposons that have invaded the genome of most eukaryote species. Several SINE families are present in B. oleracea and A. thaliana and we found that two of them (called RathE1 and RathE2) are present in both species. In this study, the tempo of evolution of RathE1 and RathE2 SINE families in both species was compared. We observed that most B. oleracea RathE2 SINEs are "young" (close to the consensus sequence) and abundant while elements from this family are more degenerated and much less abundant in A. thaliana. However, the situation is different for the RathE1 SINE family for which the youngest elements are found in A. thaliana. Surprisingly, no SINE was found to occupy the same (orthologous) genomic locus in both species suggesting that either these SINE families were not amplified at a significant rate in the common ancestor of the two species or that older elements were lost and only the recent (lineage-specific) insertions remain. To test this latter hypothesis, loci containing a recently inserted SINE in the A. thaliana col-0 ecotype were selected and characterized in several other A. thaliana ecotypes. In addition to the expected SINE containing allele and the pre-integrative allele (i.e. the "empty" allele), we observed in the different ecotypes, alleles with truncated portions of the SINE (up to the complete loss of the element) and of the immediate genomic flanking sequences. The absence of SINEs in orthologous positions between B. oleracea and A. thaliana and the presence in recently diverged A. thaliana ecotypes of alleles containing severely truncated SINEs suggest a very high rate of SINE loss in these species.  相似文献   

4.
Origin and evolution of SINEs in eukaryotic genomes   总被引:1,自引:0,他引:1  
Kramerov DA  Vassetzky NS 《Heredity》2011,107(6):487-495
  相似文献   

5.
Short interspersed elements (SINEs) are a class of dispersed mobile sequences that use RNA as an intermediate in an amplification process called retroposition. The presence-absence of a SINE at a given locus has been used as a meaningful classification criterion to evaluate phylogenetic relations among species. We review here recent developments in the characterisation of plant SINEs and their use as molecular makers to retrace phylogenetic relations among wild and cultivated Oryza and Brassica species. In Brassicaceae, further use of SINE markers is limited by our partial knowledge of endogenous SINE families (their origin and evolution histories) and by the absence of a clear classification. To solve this problem, phylogenetic relations among all known Brassicaceae SINEs were analyzed and a new classification, grouping SINEs in 15 different families, is proposed. The relative age and size of each Brassicaceae SINE family was evaluated and new phylogenetically supported subfamilies were described. We also present evidence suggesting that new potentially active SINEs recently emerged in Brassica oleracea from the shuffling of preexisting SINE portions. Finally, the comparative evolution history of SINE families present in Arabidopsis thaliana and Brassica oleracea revealed that SINEs were in general more active in the Brassica lineage. The importance of these new data for the use of Brassicaceae SINEs as molecular markers in future applications is discussed.  相似文献   

6.
Eukaryotic genomes are colonized by different retroposons, including short interspersed repetitive elements (SINEs). All currently known SINEs are derived from tRNA and 7SL RNA genes and exploit their type 2 internal pol III promoters. We report here a novel class of SINE elements, called SINE3, derived from 5S rRNA. SINE3s are transcribed from the type 1 internal pol III promoter. Approximately 10,000 copies of SINE3 elements are present in the zebrafish genome, they constitute approximately 0.4% of the genomic DNA. Some elements are as little as 1% diverged from each other, indicating that the retrotransposition of SINE3 in zebrafish is an ongoing process. The 3'-tail of SINE3 is significantly similar to that of CR1-like non-LTR retrotransposons, represented by numerous subfamilies in the zebrafish genome. Analogously to CR1-like elements, SINE3 copies are not flanked by target site duplications, and their 3' termini are composed of (ACATT)n and (ATT)n microsatellites, specific for different subfamilies of SINE3. Given the common structural features, it is highly likely that the enzymatic machinery encoded by CR1-like elements powers proliferation of SINE3.  相似文献   

7.
Repetitive sequences are ubiquitous components of eukaryotic genomes affecting genome size and evolution as well as gene regulation. Among them, short interspersed nuclear elements (SINEs) are non‐coding retrotransposons usually shorter than 1000 bp. They contain only few short conserved structural motifs, in particular an internal promoter derived from cellular RNAs and a mostly AT‐rich 3′ tail, whereas the remaining regions are highly variable. SINEs emerge and vanish during evolution, and often diversify into numerous families and subfamilies that are usually specific for only a limited number of species. In contrast, at the 3′ end of multiple plant SINEs we detected the highly conserved ‘Angio‐domain’. This 37 bp segment defines the Angio‐SINE superfamily, which encompasses 24 plant SINE families widely distributed across 13 orders within the plant kingdom. We retrieved 28 433 full‐length Angio‐SINE copies from genome assemblies of 46 plant species, frequently located in genes. Compensatory mutations in and adjacent to the Angio‐domain imply selective restraints maintaining its RNA structure. Angio‐SINE families share segmental sequence similarities, indicating a modular evolution with strong Angio‐domain preservation. We suggest that the conserved domain contributes to the evolutionary success of Angio‐SINEs through either structural interactions between SINE RNA and proteins increasing their transpositional efficiency, or by enhancing their accumulation in genes.  相似文献   

8.
The cat family Felidae was used as a species tree to assess the phylogenetic performance of genes, and their embedded SINE elements, within the nonrecombining region of the Y chromosome (NRY). Genomic segments from single-copy X-Y homologs SMCY, UBE1Y, and ZFY (3,604 bp) were amplified in 36 species of cat. These genes are located within the X-degenerate region of the NRY and are thought to be molecular "fossils" that ceased conventional recombination with the X chromosome early within the placental mammal evolution. The pattern and tempo of evolution at these three genes is significant in light of the recent, rapid evolution of the family over approximately 12 Myr and provides exceptional support for each of the eight recognized felid lineages, as well as clear diagnostic substitutions identifying nearly all species. Bootstrap support and Bayesian posterior probabilities are uniformly high for defining each of the eight monophyletic lineages. Further, the preferential use of specific target-site motifs facilitating SINE insertion is empirically supported by sequence analyses of SINEs embedded within the three genes. Target-site insertion is thought to explain the contradiction between intron phylogeny and results of the SMCY SINE phylogeny that unites distantly related species. Overall, our data suggest X-degenerate genes within the NRY are singularly powerful markers and offer a valuable patrilineal perspective in species evolution.  相似文献   

9.
Although recent mammalian genome projects have uncovered a large part of genomic component of various groups, several repetitive sequences still remain to be characterized and classified for particular groups. The short interspersed repetitive elements (SINEs) distributed among marsupial genomes are one example. We have identified and characterized two new SINEs from marsupial genomes that belong to the CORE-SINE family, characterized by a highly conserved "CORE" domain. PCR and genomic dot blot analyses revealed that the distribution of each SINE shows distinct patterns among the marsupial genomes, implying different timing of their retroposition during the evolution of marsupials. The members of Mar3 (Marsupialia 3) SINE are distributed throughout the genomes of all marsupials, whereas the Mac1 (Macropodoidea 1) SINE is distributed specifically in the genomes of kangaroos. Sequence alignment of the Mar3 SINEs revealed that they can be further divided into four subgroups, each of which has diagnostic nucleotides. The insertion patterns of each SINE at particular genomic loci, together with the distribution patterns of each SINE, suggest that the Mar3 SINEs have intensively amplified after the radiation of diprotodontians, whereas the Mac1 SINE has amplified only slightly after the divergence of hypsiprimnodons from other macropods. By compiling the information of CORE-SINEs characterized to date, we propose a comprehensive picture of how SINE evolution occurred in the genomes of marsupials.  相似文献   

10.
Short interspersed repetitive elements (SINEs) are a kind of retroposons dispersed among the eukaryotic genomes. Previously, we isolated and characterized a new SINE family, named CHR-2, members of which are distributed in the genomes of cetaceans, hippopotamuses, and ruminants. We analyzed systematically more than a hundred members of the CHR-2 SINEs, which were isolated from the genomes of cetaceans and cow, together with the additional data available in the DNA databases, and showed that these SINEs are divided into at least five distinct subfamilies that share diagnostic nucleotides and/or deletions. A hybridization analysis clearly demonstrated that, among these five subfamilies, two subfamilies, named CD and CDO, are specific to cetaceans and toothed whales, respectively. We reconstruct the evolutionary history of the CHR-2 SINEs during evolution of cetartiodactyl genomes. Received: 13 June 2001 / Accepted: 12 July 2001  相似文献   

11.
Short interspersed elements (SINEs) are nonautonomous non-LTR retrotransposons that populate eukaryotic genomes. Numerous SINE families have been identified in animals, whereas only a few have been described in plants. Here we describe a new family of SINEs, named BoS, that is widespread in Brassicaceae and present at ∼2000 copies in Brassica oleracea. In addition to sharing a modular structure and target site preference with previously described SINEs, BoS elements have several unusual features. First, the head regions of BoS RNAs can adopt a distinct hairpin-like secondary structure. Second, with 15 distinct subfamilies, BoS represents one of the most diverse SINE families described to date. Third, several of the subfamilies have a mosaic structure that has arisen through the exchange of sequences between existing subfamilies, possibly during retrotransposition. Analysis of BoS subfamilies indicate that they were active during various time periods through the evolution of Brassicaceae and that active elements may still reside in some Brassica species. As such, BoS elements may be a valuable tool as phylogenetic makers for resolving outstanding issues in the evolution of species in the Brassicaceae family.  相似文献   

12.
Several novel (sub)families of SINEs were isolated from the genomes of cetaceans and artiodactyls, and their sequences were determined. From comparisons of diagnostic nucleotides among the short interspersed repetitive elements (SINEs) in these (sub)families, we were able to draw the following conclusions. (1) After the divergence of the suborder Tylopoda (camels), the CHRS family of SINEs was newly created from tRNA(Glu) in a common ancestor of the lineages of the Suina (pigs and peccaries), Ruminantia (cows and deer), and Cetacea (whales and dolphins). (2) After divergence of the Suina lineage, the CHR-1 SINE and the CHR-2 SINE were generated successively in a common ancestor of ruminants, hippopotamuses, and cetaceans. (3) In the Ruminantia lineage, the Bov-tA SINE was generated by recombination between the CHR-2 SINE and Bov-A. (4) In the Suina lineage, the CHRS-S SINE was generated from the CHRS SINE. (5) In this latter lineage, the PRE-1 family of SINEs was created by insertion of part of the gene for tRNA(Arg) into the 5' region of the CHRS-S family. The distribution of a particular family of SINEs among species of artiodactyls and cetaceans confirmed the most recent conclusion for paraphyly of the order Artiodactyla. The present study also revealed that a newly created tRNA(Glu)-derived family of SINEs was subjected both to recombination with different units and to duplication of an internal sequence within a SINE unit to generate, during evolution, a huge superfamily of tRNA(Glu)-related families of SINEs that are now found in the genomes of artiodactyls and cetaceans.  相似文献   

13.
Short interspersed nuclear elements (SINEs) are highly abundant non‐autonomous retrotransposons that are widespread in plants. They are short in size, non‐coding, show high sequence diversity, and are therefore mostly not or not correctly annotated in plant genome sequences. Hence, comparative studies on genomic SINE populations are rare. To explore the structural organization and impact of SINEs, we comparatively investigated the genome sequences of the Solanaceae species potato (Solanum tuberosum), tomato (Solanum lycopersicum), wild tomato (Solanum pennellii), and two pepper cultivars (Capsicum annuum). Based on 8.5 Gbp sequence data, we annotated 82 983 SINE copies belonging to 10 families and subfamilies on a base pair level. Solanaceae SINEs are dispersed over all chromosomes with enrichments in distal regions. Depending on the genome assemblies and gene predictions, 30% of all SINE copies are associated with genes, particularly frequent in introns and untranslated regions (UTRs). The close association with genes is family specific. More than 10% of all genes annotated in the Solanaceae species investigated contain at least one SINE insertion, and we found genes harbouring up to 16 SINE copies. We demonstrate the involvement of SINEs in gene and genome evolution including the donation of splice sites, start and stop codons and exons to genes, enlargement of introns and UTRs, generation of tandem‐like duplications and transduction of adjacent sequence regions.  相似文献   

14.
Gadzalski M  Sakowicz T 《Gene》2011,480(1-2):21-27
Although short interspersed elements (SINEs) were discovered nearly 30 years ago, the studies of these genomic repeats were mostly limited to animal genomes. Very little is known about SINEs in legumes--one of the most important plant families. Here we report identification, genomic distribution and molecular features of six novel SINE elements in Lotus japonicus (named LJ_SINE-1, -2, -3) and Medicago truncatula (MT_SINE-1, -2, -3), model species of legume. They possess all the structural features commonly found in short interspersed elements including RNA polymerase III promoter, polyA tail and flanking repeats. SINEs described here are present in low to moderate copy numbers from 150 to 3000. Bioinformatic analyses were used to searched public databases, we have shown that three of new SINE elements from M. truncatula seem to be characteristic of Medicago and Trifolium genera. Two SINE families have been found in L. japonicus and one is present in both M. truncatula and L. japonicus. In addition, we are discussing potential activities of the described elements.  相似文献   

15.
Some previously unidentified short interspersed repetitive elements (SINEs) and long interspersed repetitive element (LINEs) were isolated from various higher elasmobranchs (sharks, skates, and rays) and characterized. These SINEs, members of the HE1 SINE family, were tRNA-derived and were widespread in higher elasmobranches. The 3'-tail region of this SINE family was strongly conserved among elasmobranchs. The LINEs, members of the HER1 LINE family, encoded an amino acid sequence similar to that encoded by the chicken CR1 LINE family, and they contained a strongly conserved 3'-tail region in the 3' untranslated region. This tail region of the HER1 LINE family was almost identical to that of the HE1 SINE family. Thus, the HE1 SINE family and the HER1 LINE family provide a clear example of a pair of SINEs and LINEs that share the same tail region. Conservation of the secondary structures of the tail regions, as well as of the nucleotide sequences, between the HE1 SINE family and HER1 LINE family during evolution suggests that SINEs utilize the enzymatic machinery for retroposition of LINEs through the recognition of higher-order structures of the conserved 3'-tail region. A discussion is presented of the parasitism of SINEs on LINEs during the evolution of these retroposons.  相似文献   

16.
N. Takasaki  T. Yamaki  M. Hamada  L. Park    N. Okada 《Genetics》1997,146(1):369-380
The genomes of chum salmon and pink salmon contain a family of short interspersed repetitive elements (SINEs), designated the salmon SmaI family. It is restricted to these two species, a distribution that suggests that this SINE family might have been generated in their common ancestor. When insertions of the SmaI SINEs at 10 orthologous loci of these species were analyzed, however, it was found that there were no shared insertion sites between chum and pink salmon. Furthermore, at six loci where SmaI SINEs have been species-specifically inserted in chum salmon, insertions of SINEs were polymorphic among populations of chum salmon. By contrast, at four loci where SmaI SINEs had been species-specifically inserted in pink salmon, the SINEs were fixed among all populations of pink salmon. The interspecific and intraspecific variation of the SmaI SINEs cannot be explained by the assumption that the SmaI family was amplified in a common ancestor of these two species. To interpret these observations, we propose several possible models, including introgression and the horizontal transfer of SINEs from pink salmon to chum salmon during evolution.  相似文献   

17.
Short interspersed nuclear elements (SINEs) are non‐autonomous transposable elements which are propagated by retrotransposition and constitute an inherent part of the genome of most eukaryotic species. Knowledge of heterogeneous and highly abundant SINEs is crucial for de novo (or improvement of) annotation of whole genome sequences. We scanned Poaceae genome sequences of six important cereals (Oryza sativa, Triticum aestivum, Hordeum vulgare, Panicum virgatum, Sorghum bicolor, Zea mays) and Brachypodium distachyon to examine the diversity and evolution of SINE populations. We comparatively analyzed the structural features, distribution, evolutionary relation and abundance of 32 SINE families and subfamilies within grasses, comprising 11 052 individual copies. The investigation of activity profiles within the Poaceae provides insights into their species‐specific diversification and amplification. We found that Poaceae SINEs (PoaS) fall into two length categories: simple SINEs of up to 180 bp and dimeric SINEs larger than 240 bp. Detailed analysis at the nucleotide level revealed that multimerization of related and unrelated SINE copies is an important evolutionary mechanism of SINE formation. We conclude that PoaS families diversify by massive reshuffling between SINE families, likely caused by insertion of truncated copies, and provide a model for this evolutionary scenario. Twenty‐eight of 32 PoaS families and subfamilies show significant conservation, in particular either in the 5′ or 3′ regions, across Poaceae species and share large sequence stretches with one or more other PoaS families.  相似文献   

18.
Wide distribution of short interspersed elements among eukaryotic genomes.   总被引:7,自引:0,他引:7  
Most short interspersed elements (SINEs) in eukaryotic genomes originate from tRNA and have internal promoters for RNA polymerase III. The promoter contains two boxes (A and B) spaced by approximately 33 bp. We used oligonucleotide primers specific to these boxes to detect SINEs in the genomic DNA by polymerase chain reaction (PCR). Appropriate DNA fragments were revealed by PCR in 30 out of 35 eukaryotic species suggesting the wide distribution of SINEs. The PCR products were used for hybridization screening of genomic libraries which resulted in identification of four novel SINE families. The application of this approach is illustrated by discovery of a SINE family in the genome of the bat Myotis daubentoni. Members of this SINE family termed VES have an additional B-like box, a putative polyadenylation signal and RNA polymerase III terminator.  相似文献   

19.
Short interspersed nuclear elements (SINEs) are a widespread type of small transposable element (TE). With increasing evidence for their impact on gene function and genome evolution in plants, accurate genome-scale SINE annotation becomes a fundamental step for studying the regulatory roles of SINEs and their relationship with other components in the genomes. Despite the overall promising progress made in TE annotation, SINE annotation remains a major challenge. Unlike some other TEs, SINEs are short and heterogeneous, and they usually lack well-conserved sequence or structural features. Thus, current SINE annotation tools have either low sensitivity or high false discovery rates. Given the demand and challenges, we aimed to provide a more accurate and efficient SINE annotation tool for plant genomes. The pipeline starts with maximizing the pool of SINE candidates via profile hidden Markov model-based homology search and de novo SINE search using structural features. Then, it excludes the false positives by integrating all known features of SINEs and the features of other types of TEs that can often be misannotated as SINEs. As a result, the pipeline substantially improves the tradeoff between sensitivity and accuracy, with both values close to or over 90%. We tested our tool in Arabidopsis thaliana and rice (Oryza sativa), and the results show that our tool competes favorably against existing SINE annotation tools. The simplicity and effectiveness of this tool would potentially be useful for generating more accurate SINE annotations for other plant species. The pipeline is freely available at https://github.com/yangli557/AnnoSINE.

By integrating all known features of short interspersed nuclear elements (SINEs), AnnoSINE is a tool for both accurate and fast genome-scale SINE annotation in plant genomes.  相似文献   

20.
The current model of short interspersed nuclear element (SINE) mobility suggests that these non-coding retroposons are able to recruit for their own benefits the enzymatic machinery encoded by autonomous long interspersed nuclear elements (LINEs). The recent characterization of potential SINE-LINE partner pairs that share common 3' end sequences concurs with this model and has led to a potent picture of tRNA-derived SINEs consisting of a tripartite functional structure (Mol. Cell. Biol. 16 (1996) 3756; Mol. Biol. Evol. 16 (1999) 1238; Proc. Natl. Acad. Sci. USA 96 (1999) 2869). This structure consist of a 5' polIII tRNA-related promoter region, a central conserved domain and a variable 3' region with homology to the 3' end of LINEs, believed to be essential to direct recognition by the LINE proteins. To test this model in vivo, we have designed synthetic SINEs possessing this 'canonical' structure, including 3' homology to the 3' UTR of the LINE I factor from Drosophila. These synthetic elements were introduced in a Drosophila reactive strain, and SINE retroposition was assessed following dysgenic crosses that are known to induce high levels of I factor germinal transposition. In the progeny from the dysgenic crosses 3400-4000 flies were analyzed but no retroposed copy of the chimeric SINEs was detected, indicating that what is assumed to be a typical SINE structure is not sufficient per se to allow efficient trans-mobilization of our synthetic SINEs by an actively amplifying partner LINE. Alternatively, the apparent absence of natural fly SINEs may underline intrinsic properties of fly biology that are incompatible with the genesis and/or propagation of SINE-like elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号