首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Hodge PD  Stow ND 《Journal of virology》2001,75(19):8977-8986
The cis-acting signals required for cleavage and encapsidation of the herpes simplex virus type 1 genome lie within the terminally redundant region or a sequence. The a sequence is flanked by short direct repeats (DR1) containing the site of cleavage, and quasi-unique regions, Uc and Ub, occupy positions adjacent to the genomic L and S termini, respectively, such that a novel fragment, Uc-DR1-Ub, is generated upon ligation of the genomic ends. The Uc-DR1-Ub fragment can function as a minimal packaging signal, and motifs have been identified within Uc and Ub that are conserved near the ends of other herpesvirus genomes (pac2 and pac1, respectively). We have introduced deletion and substitution mutations within the pac regions of the Uc-DR1-Ub fragment and assessed their effects on DNA packaging in an amplicon-based transient transfection assay. Within pac2, mutations affecting the T tract had the greatest inhibitory effect, but deletion of sequences on either side of this element also reduced packaging, suggesting that its position relative to other sequences within the Uc-DR1-Ub fragment is likely to be important. No single region essential for DNA packaging was detected within pac1. However, mutants lacking the G tracts on either side of the pac1 T-rich motif exhibited a reduced efficiency of serial propagation, and alteration of the sequences between DR1 and the pac1 T element also resulted in defective generation of Ub-containing terminal fragments. The data are consistent with a model in which initiation and termination of packaging are specified by sequences within Uc and Ub, respectively.  相似文献   

2.
The nuc- lesion affecting alkaline exonuclease activity in the herpes simplex virus type 2 (HSV-2) mutant ts1348 had previously been mapped to the EcoRI-D restriction enzyme fragment of HSV-1. Eight clones with deletions representing most of HSV-1 EcoRI fragment D were selected with lambda gtWES hybrids. These clones were tested for their ability to rescue the alkaline exonuclease activity of HSV-2 nuc- ts1348 virus. The sequences colinear with the HSV-2 nuc- lesion were found to map between 0.169 and 0.174 map units on the HSV-1 Patton genome, representing an 0.8-kilobase-pair region that is 12.9 to 13.7 kilobase pairs from the left end of HSV-1 EcoRI fragment D.  相似文献   

3.
The frequency-dependent dielectrophoretic behaviour of an enveloped mammalian virus, herpes simplex virus type 1 is described. It is demonstrated that over the range 10 kHz–20 MHz, these viral particles, when suspended in an aqueous medium of conductivity 5 mS m?1, can be manipulated by both positive and negative dielectrophoresis using microfabricated electrode arrays. The observed transition from positive to negative dielectrophoresis at frequencies around 4.5 MHz is in qualitative agreement with a simple model of the virus as a conducting particle surrounded by an insulating membrane.  相似文献   

4.
5.
L P Deiss  J Chou    N Frenkel 《Journal of virology》1986,59(3):605-618
Newly replicated herpes simplex virus (HSV) DNA consists of head-to-tail concatemers which are cleaved to generate unit-length genomes bounded by the terminally reiterated a sequence. Constructed defective HSV vectors (amplicons) containing a viral DNA replication origin and the a sequence are similarly replicated into large concatemers which are cleaved at a sequences punctuating the junctions between adjacent repeat units, concurrent with the packaging of viral DNA into nucleocapsids. In the present study we tested the ability of seed amplicons containing specific deletions in the a sequence to become cleaved and packaged and hence be propagated in virus stocks. These studies revealed that two separate signals, located within the Ub and Uc elements of the a sequence, were essential for amplicon propagation. No derivative defective genomes were recovered from seed constructs which lacked the Uc signal. In contrast, propagation of seed constructs lacking the Ub signal resulted in the selection of defective genomes with novel junctions, containing specific insertions of a sequences derived from the helper virus DNA. Comparison of published sequences of concatemeric junctions of several herpesviruses supported a uniform mechanism for the cleavage-packaging process, involving the measurement from two highly conserved blocks of sequences (pac-1 and pac-2) which were homologous to the required Uc and Ub sequences. These results form the basis for general models for the mechanism of cleavage-packaging of herpesvirus DNA.  相似文献   

6.
The ribonucleotide reductase (ribonucleoside-diphosphate reductase; EC 1.17.4.1) induced by herpes simplex virus type 2 infection of serum-starved BHK-21 cells was purified to provide a preparation practically free of both eucaryotic ribonucleotide reductase and contaminating enzymes that could significantly deplete the substrates. Certain key properties of the herpes simplex virus type 2 ribonucleotide reductase were examined to define the extent to which it resembled the herpes simplex virus type 1 ribonucleotide reductase. The herpes simplex virus type 2 ribonucleotide reductase was inhibited by ATP and MgCl2 but only weakly inhibited by the ATP X Mg complex. Deoxynucleoside triphosphates were at best only weak inhibitors of this enzyme. ADP was a competitive inhibitor (K'i, 11 microM) of CDP reduction (K'm, 0.5 microM), and CDP was a competitive inhibitor (K'i, 0.4 microM) of ADP reduction (K'm, 8 microM). These key properties closely resemble those observed for similarly purified herpes simplex virus type 1 ribonucleotide reductase and serve to distinguish these virally induced enzymes from other ribonucleotide reductases.  相似文献   

7.
Recombinant adeno-associated virus (AAV) type 2 (rAAV) vectors have recently been shown to have great utility as gene transfer agents both in vitro and in vivo. One of the problems associated with the use of rAAV vectors has been the difficulty of large-scale vector production. Low-efficiency plasmid transfection of the rAAV vector and complementing AAV type 2 (AAV-2) functions (rep and cap) followed by superinfection with adenovirus has been the standard approach to rAAV production. The objectives of this study were to demonstrate the ability of a recombinant herpes simplex virus type 1 (HSV-1) amplicon expressing AAV-2 Rep and Cap to support replication and packaging of rAAV vectors. HSV-1 amplicon vectors were constructed which contain the AAV-2 rep and cap genes under control of their native promoters (p5, p19, and p40). An HSV-1 amplicon vector, HSV-RC/KOS or HSV-RC/d27, was generated by supplying helper functions with either wild-type HSV-1 (KOS strain) or the ICP27-deleted mutant of HSV-1, d27-1, respectively. Replication of the amplicon stocks is not inhibited by the presence of AAV-2 Rep proteins, which highlights important differences between HSV-1 and adenovirus replication and the mechanism of providing helper function for productive AAV infection. Coinfection of rAAV and HSV-RC/KOS resulted in the replication and amplification of rAAV genomes. Similarly, rescue and replication of rAAV genomes occurred when rAAV vector plasmids were transfected into cells followed by HSV-RC/KOS infection and when two rAAV proviral cell lines were infected with HSV-RC/KOS or HSV-RC/d27. Production of infectious rAAV by rescue from two rAAV proviral cell lines has also been achieved with HSV-RC/KOS and HSV-RC/d27. The particle titer of rAAV produced with HSV-RC/d27 is equal to that achieved by supplying rep and cap by transfection followed by adenovirus superinfection. Importantly, no detectable wild-type AAV-2 is generated with this approach. These results demonstrate that an HSV-1 amplicon expressing the AAV-2 genes rep and cap along with HSV-1 helper functions supports the replication and packaging of rAAV vectors in a scaleable process.  相似文献   

8.
It is often stated that individuals of a species can differ significantly in their innate resistance to infection with herpes simplex virus type 1 (HSV-1). Three decades ago Lopez reported that C57BL/6 mice could survive a 5,000-fold-higher inoculum of HSV-1 given intraperitoneally than mice of the A or BALB/c strain (Nature 258:152-153, 1975). Susceptible strains of mice died of encephalitis-like symptoms, suggesting that viral spread to the central nervous system was the cause of death. Although Lopez's study documented that C57BL/6 mice were resistant to the development of HSV-1 encephalitis and mortality, the resistance of C57BL/6 mice to other steps of the HSV-1 infection process was not assessed. The results of the present study extend these observations to clarify the difference between resistance to (i) HSV-1 pathogenesis, (ii) HSV-1 replication, (iii) HSV-1 spread, and (iv) the establishment of latent HSV-1 infection. Although C57BL/6 mice are more resistant to HSV-1 pathogenesis than BALB/c mice, the results of the present study establish that HSV-1 enters, replicates, spreads, and establishes latent infections with virtually identical efficiencies in C57BL/6 and BALB/c mice. These observations raise questions about the validity of the inference that differences in natural resistance are relevant in explaining what differentiates humans with recurrent herpetic disease from the vast majority of asymptomatic carriers of HSV-1 and HSV-2.  相似文献   

9.
Evidence is presented that the herpes simplex virus type 2 glycoprotein previously designated gF is antigenically related to herpes simplex virus type 1 gC (gC-1). An antiserum prepared against type 1 virion envelope proteins immunoprecipitated gF of type 2 (gF-2), and competition experiments revealed that the anti-gC-1 component of the antiserum was responsible for the anti-gF-2 cross-reactivity. An antiserum prepared against fully denatured purified gF-2, however, and three anti-gF-2 monoclonal antibodies failed to precipitate any type 1 antigen, indicating that the extent of cross-reactivity between gC-1 and gF-2 may be limited. Several aspects of gF-2 synthesis and processing were investigated. Use of the enzymes endo-beta-N-acetylglucosaminidase H and alpha-D-N-acetylgalactosaminyl oligosaccharidase revealed that the fully processed form of gF-2 (about 75,000 [75K] apparent molecular weight) had both complex-type N-linked and O-linked oligosaccharides, whereas newly synthesized forms (67K and 69K) had only high-mannose N-linked oligosaccharides. These last two forms were both reduced in size to 54K by treatment with endo-beta-N-acetylglucosaminidase H and therefore appear to differ only in the number of N-linked chains. Neutralization tests and radioiodination experiments revealed that gF-2 is exposed on the surfaces of virions and that the 75K form of gF-2 is exposed on cell surfaces. The similarities and differences of gF-2 and gC-1 are discussed in light of recent mapping results which suggest collinearity of their respective genes.  相似文献   

10.
Entry of herpes simplex virus type 1 (HSV-1) into host cells occurs through fusion of the viral envelope with the plasma membrane and involves complex and poorly understood interactions between several viral and cellular proteins. One strategy for dissecting the function of this fusion machine is through the use of specific inhibitors. We identified a peptide with antiviral activity that blocks HSV-1 infection at the entry stage and during cell-to-cell spreading. This peptide (called EB for "entry blocker") consists of the FGF4 signal sequence with an RRKK tetramer at the amino terminus to improve solubility. The activity of EB depends exclusively but not canonically on the signal sequence. Inhibition of virus entry (hrR3) and plaque formation (KOS) strongly depend on virus concentrations and serum addition, with 50% inhibitory concentrations typically ranging from 1 to 10 microM. Blocking preadsorbed virus requires higher EB concentrations. Cytotoxic effects (trypan blue exclusion) are first noted at 50 microM EB in serum-free medium and at > or = 200 microM in the presence of serum. EB does not affect gC-dependent mechanisms of virus attachment and does not block virus attachment at 4 degrees C. Instead, EB directly interacts with virions and inactivates them irreversibly without, however, disrupting their physical integrity as judged by electron microscopy. At subvirucidal concentrations, EB changes the adhesive properties of virions, causing aggregation at high virus concentrations. This peptide may be a useful tool for studying viral entry mechanisms.  相似文献   

11.
We have isolated a new cyclic AMP-independent protein kinase activity induced in HeLa cells by infection with herpes simplex virus type 1. Induction of the enzyme does not occur in cells treated with cycloheximide at the time of infection, or in cells infected with UV-inactivated herpes simplex virus type 1. The amount of enzyme induced in infected cells is dependent upon the multiplicity of infection. An enzyme with identical properties to the appearing in infected HeLa cells is also induced by herpes simplex virus type 1 in BHK cells.  相似文献   

12.
13.
Hand-to-hand transmission of herpes simplex virus type 1   总被引:2,自引:0,他引:2  
D Bardell 《Microbios》1989,59(239):93-100
Droplets of tissue culture fluid containing herpes simplex virus type 1 were placed on the palm of the hand. Each 0.01 ml droplet was taken from a stock virus suspension with a titre of 10(7.5) TCID50/0.1 ml. At 0, 15, 30, 60 and 120 min a droplet was firmly touched with the middle finger of the right hand, after which, attempts were made to recover virus from the finger. At 0 min, when the virus-containing droplet was in a liquid state, there was a 100% rate of virus recovery. By 15 min the droplets had dried out, and after touching dried out droplets there was a 40% virus recovery rate, even though experimental procedures demonstrated that infectious virus was present in the dried out droplets at all test times. If the finger was moistened with tap water or saliva, there was a 100% recovery rate of virus after touching dried out droplets, as well as after touching droplets in a liquid state.  相似文献   

14.
Glycoprotein D (gD) is a viron envelope component of herpes simplex virus types 1 and 2. We have previously defined seven monoclonal antibody (MAb) groups which recognize distinct epitopes on the mature gD-1 protein of 369 amino acids. MAb groups VII, II, and V recognize continuous epitopes at residues 11-19, 272-279, and 340-356, respectively. MAb groups I, III, IV, and VI recognize discontinuous epitopes. Recent studies have focused on epitopes I, III, and VI. Using truncated forms of gD generated by recombinant DNA methods and proteolysis, epitopes III, IV, and VI were located within amino acids 1-233. A portion of discontinuous epitope I was located in a region within residues 233-275. For this study, we used recombinant DNA methods to create mutations in the gD-1 gene and studied the effects of those mutations on gD as expressed in mammalian cells. Plasmid pRE4, containing the coding sequence of gD-1 and the Rous sarcoma virus long terminal repeat promoter, was transfected into mammalian cells. The expressed protein, gD-1-(pRE4), was identical in size and antigenic properties to gD-1 from infected cells. Six in-frame deletion mutations were subsequently constructed by using restriction enzymes to excise portions of the gD-1 gene. Plasmids carrying these mutated forms were transfected into cells, and the corresponding proteins were examined at 48 h posttransfection for antigenicity and glycosylation patterns. Three deletions of varying size were located downstream of residue 233. Analysis of these mutants showed that amino acids within the region 234-244 were critical for binding of DL11 (group I), but not for other MAb groups. Three other deletion mutants lost all ability to bind MAbs which recognize discontinuous epitopes. In addition, much of the gD expressed by these mutants was observed to migrate as high-molecular-weight aggregated forms in nondenaturing gels. Each of these mutations involved the loss of a cysteine residue, suggesting that disulfide linkages play an essential role in the formation of discontinuous epitopes. The extent of glycosylation of the mutant gD molecules accumulated at 48 h posttransfection suggested altered carbohydrate processing. In one case, there was evidence for increased O-linked glycosylation. Those proteins which had lost a cysteine residue as part of the deletion did not accumulate molecules processed beyond the high-mannose stage. The results suggest that carbohydrate processing during synthesis of gD is very sensitive to alterations in structure, particularly changes involving cysteine residues.  相似文献   

15.
Viral immune evasion strategies are important for establishment and maintenance of infections. Many viruses are in possession of mechanisms to counteract the antiviral response raised by the infected host. Here we show that a herpes simplex virus type 1 (HSV-1) mutant lacking functional viral protein 16 (VP16)-a tegument protein promoting viral gene expression-induced significantly higher levels of proinflammatory cytokines than wild-type HSV-1. This was observed in several cell lines and primary murine macrophages, as well as in peritoneal cells harvested from mice infected in vivo. The enhanced ability to stimulate cytokine expression in the absence of VP16 was not mediated directly by VP16 but was dependent on the viral immediate-early genes for infected cell protein 4 (ICP4) and ICP27, which are expressed in a VP16-dependent manner during primary HSV infection. The virus appeared to target cellular factors other than interferon-induced double-stranded RNA-activated protein kinase R (PKR), since the virus mutants remained stronger inducers of cytokines in cells stably expressing a dominant-negative mutant form of PKR. Finally, mRNA stability assay revealed a significantly longer half-life for interleukin-6 mRNA after infection with the VP16 mutant than after infection with the wild-type virus. Thus, HSV is able to suppress expression of proinflammatory cytokines by decreasing the stability of mRNAs, thereby potentially impeding the antiviral host response to infection.  相似文献   

16.
17.
Drake JW  Hwang CB 《Genetics》2005,170(2):969-970
All seven DNA-based microbes for which carefully established mutation rates and mutational spectra were previously available displayed a genomic mutation rate in the neighborhood of 0.003 per chromosome replication. The pathogenic mammalian DNA virus herpes simplex type 1 has an estimated genomic mutation rate compatible with that value.  相似文献   

18.
To study the effects of missense, nonsense, and deletion mutations of the gB glycoprotein gene of herpes simplex virus type 1, a gB-transformed cell line was isolated that, after virus infection, would express sufficient quantities of gB from the cellular chromosome to complement temperature-sensitive gB mutants. The transformed cell line was then used as a permissive cell to transfer two gB mutations from plasmid to viral DNA. One of the mutants, K082, harbored an HpaI linker insertion that introduced one new amino acid and a chain terminator codon within amino acid residue 43. The other mutant contained a 969-base-pair deletion in a part of the gene that includes the membrane-spanning region; a correspondingly shorter gB polypeptide was detected by sodium dodecyl sulfate-gel electrophoresis after immunoprecipitation of infected-cell extracts with four pooled monoclonal antibodies. No polypeptide was observed from K082-infected cells. The shortened gB polypeptide was efficiently processed and secreted into the growth medium. Each of the four monoclonal antibodies precipitated full-length gB, and three of the four precipitated the shortened polypeptide. Enveloped virus particles could be purified after infection of nonpermissive cells with either mutant virus. Virus particles appeared to possess normal polypeptide and glycopeptide profiles except for the absence of gB. Therefore, the presence of gB is not essential for viral assembly, including envelopment. Recombinants in virus stocks grown on the gB-transformed cells occurred at frequencies on the order of 10(-7) to 10(-5), compared with a frequency of approximately 10(-2) in mixed infections with the two mutants.  相似文献   

19.
利用CRISPR/Cas9系统使单纯疱疹病毒1型(herpes simplex virus type 1,HSV-1) ul7、ul41、LAT 基因缺失构建M3减毒株(M3株),在M3株基础上通过缺失 us3 得到M4突变株(M4株)。本研究旨在分析野毒株(McKrae株)、M3株与M4株在毒力和抗细胞凋亡方面的差异。结果表明,McKrae组出现明显的临床症状,且100%死亡(P<0.001),而M3、M4组未出现临床症状。M4组小鼠组织中病毒载量明显低于McKrae组和M3组;病理学检测表明,McKrae组出现蛛网膜出血、胶质小结等现象,而M3、M4组未见病理损伤,M4组炎性因子表达与McKrae、M3组相比也显著下降(P<0.01);免疫后M4组较M3组出现高水平的中和抗体、γ干扰素(interferon γ,IFN-γ)和白细胞介素4(interleukin 4,IL-4)抗原特异性T细胞;McKrae株再次感染时,M4组小鼠组织中病毒载量明显低于对照组和M3组;在人急性T细胞淋巴瘤细胞中,M4株相比McKrae株和M3株可明显诱导细胞凋亡。  相似文献   

20.
The biogenesis of multivesicular bodies (MVBs) is topologically equivalent to virion budding. Hence, a number of viruses exploit the MVB pathway to build their envelope and exit from the cell. By expression of dominant negative forms of Vps4 and Vps24, two components of the MVB pathway, we observed an impairment in infectious herpes simplex virus (HSV) assembly/egress, in agreement with a recent report showing the involvement in HSV envelopment of Vps4, the MVB-specific ATPase (C. M. Crump, C. Yates, and T. Minson, J. Virol. 81:7380-7387). Furthermore, HSV infection resulted in morphological changes to MVBs. Glycoprotein B (gB), one of the most highly conserved glycoproteins across the Herpesviridae family, was sorted to MVB membranes. In cells expressing the dominant negative form of Vps4, the site of intracellular gB accumulation was altered; part of gB accumulated as an endoglycosidase H-sensitive immature form at a calreticulin-positive compartment, indicating that gB traffic was dependent on a functional MVB pathway. gB was ubiquitinated in both infected and transfected cells. Ubiquitination was in part dependent on ubiquitin lysine 63, a signal for cargo sorting to MVBs. Partial deletion of the gB cytoplasmic tail resulted in a dramatic reduction of ubiquitination, as well as of progeny virus assembly and release to the extracellular compartment. Thus, HSV envelopment/egress and gB intracellular trafficking are dependent on functional MVB biogenesis. Our data support the view that the sorting of gB to MVB membranes may represent a critical step in HSV envelopment and egress and that modified MVB membranes constitute a platform for HSV cytoplasmic envelopment or that MVB components are recruited to the site(s) of envelopment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号