首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Kisspeptin and its G protein-coupled receptor (GPR) 54 are essential for activation of the hypothalamo-pituitary-gonadal axis. In the rat, the kisspeptin neurons critical for gonadotropin secretion are located in the hypothalamic arcuate (ARC) and anteroventral periventricular (AVPV) nuclei. As the ARC is known to be the site of the gonadotropin-releasing hormone (GnRH) pulse generator we explored whether kisspeptin-GPR54 signalling in the ARC regulates GnRH pulses.

Methodology/Principal Findings

We examined the effects of kisspeptin-10 or a selective kisspeptin antagonist administration intra-ARC or intra-medial preoptic area (mPOA), (which includes the AVPV), on pulsatile luteinizing hormone (LH) secretion in the rat. Ovariectomized rats with subcutaneous 17β-estradiol capsules were chronically implanted with bilateral intra-ARC or intra-mPOA cannulae, or intra-cerebroventricular (icv) cannulae and intravenous catheters. Blood samples were collected every 5 min for 5–8 h for LH measurement. After 2 h of control blood sampling, kisspeptin-10 or kisspeptin antagonist was administered via pre-implanted cannulae. Intranuclear administration of kisspeptin-10 resulted in a dose-dependent increase in circulating levels of LH lasting approximately 1 h, before recovering to a normal pulsatile pattern of circulating LH. Both icv and intra-ARC administration of kisspeptin antagonist suppressed LH pulse frequency profoundly. However, intra-mPOA administration of kisspeptin antagonist did not affect pulsatile LH secretion.

Conclusions/Significance

These data are the first to identify the arcuate nucleus as a key site for kisspeptin modulation of LH pulse frequency, supporting the notion that kisspeptin-GPR54 signalling in this region of the mediobasal hypothalamus is a critical neural component of the hypothalamic GnRH pulse generator.  相似文献   

2.
Kisspeptins are peptide hormones encoded by the KiSS-1 gene and act as the principal positive regulator of the reproductive axis by directly stimulating gonadotropin-releasing hormone (GnRH) neuron activity. However, peripheral administration, as well as central administration, of kisspeptin stimulates luteinizing hormone (LH) secretion in some mammalian species. In order to evaluate the direct effects of kisspeptin-10 (the minimal kisspeptin sequence necessary for receptor activation) on LH secretion from bovine and porcine anterior pituitary (AP) cells, LH-releasing effects of kisspeptin-10 on AP cells were compared with GnRH in vitro. The AP cells were prepared from 1-month-old intact male calves, 8-month-old castrated male calves, or 6-month-old barrows, and then the cells were incubated for 2h with the peptides. The 1000 nM and 10,000 nM, but not lower concentrations, of kisspeptin-10 significantly stimulated LH secretion from the bovine AP cells (P<0.05). The 100 nM and 1000 nM, but not lower concentrations, of kisspeptin-10 significantly stimulated LH secretion from porcine AP cells (P<0.05). As 10nM of GnRH strongly stimulated LH secretion from all AP cells tested in this study, the present results suggest that kisspeptin-10 has a direct, but weak, stimulating effect on LH secretion in bovine and porcine AP cells. The present study is the first to examine the direct actions of kisspeptin on the bovine and porcine pituitary gland as far as we know. Kisspeptin might have other actions on the pituitary because the pituitary has multiple roles.  相似文献   

3.
The kisspeptin hormones are a family of peptides encoded by the KiSS-1 gene, which bind to the G-protein coupled receptor-54 (GPR54). Interactions between kisspeptin and GPR54 are thought to play a critical role in reproduction. In agreement with animal data, kisspeptin-54 administration acutely stimulates the release of gonadotrophins in both male and female healthy subjects, with no observed adverse effects. Furthermore, its potency is comparable to those of other gonadotrophin secretagogues studied. The kisspeptin-GPR54 system thus offers a novel means of therapeutically manipulating the hypothalamo-pituitary-gonadal (HPG) axis in humans. This article aims to provide a focused review of the experimental data which inform us how kisspeptin influences the HPG axis in humans.  相似文献   

4.
The G protein-coupled receptor 54 (GPR54) and its endogenous ligand, kisspeptin, are essential for activation and regulation of the hypothalamic-pituitary-gonadal axis. Analysis of RNA extracts from individually identified hypothalamic GnRH neurons with primers for GnRH, kisspeptin-1, and GPR54 revealed expression of all three gene products. Also, constitutive and GnRH agonist-induced bioluminescence resonance energy transfer between Renilla luciferase-tagged GnRH receptor and GPR54 tagged with green fluorescent protein, expressed in human embryonic kidney 293 cells, revealed heterooligomerization of the two receptors. Whole cell patch-clamp recordings from identified GnRH neurons showed initial depolarizing effects of kisspeptin on membrane potential, followed by increased action potential firing. In perifusion studies, treatment of GT1-7 neuronal cells with kisspeptin-10 increased GnRH peak amplitude and duration. The production and secretion of kisspeptin in cultured hypothalamic neurons and GT1-7 cells were detected by a specific RIA and was significantly reduced by treatment with GnRH. The expression of kisspeptin and GPR54 mRNAs in identified hypothalamic GnRH neurons, as well as kisspeptin secretion, indicate that kisspeptins may act as paracrine and/or autocrine regulators of the GnRH neuron. Stimulation of GnRH secretion by kisspeptin and the opposing effects of GnRH on kisspeptin secretion indicate that GnRH receptor/GnRH and GPR54/kisspeptin autoregulatory systems are integrated by negative feedback to regulate GnRH and kisspeptin secretion from GnRH neurons.  相似文献   

5.
Wahab F  Aziz F  Irfan S  Zaman WU  Shahab M 《Life sciences》2008,83(19-20):633-637
AIMS: In primates, changes in nutritional status affect the hypothalamic-pituitary-gonadal (HPG) axis by still poorly understood mechanisms. Recently, hypothalamic kisspeptin-GPR54 signaling has emerged as a significant regulator of this neuroendocrine axis. The present study was designed to examine whether suppression of the reproductive function by acute food-restriction in a non-human primate is mediated by decreased responsiveness of the HPG axis to endogenous kisspeptin drive. MAIN METHODS: Five intact adult male rhesus monkeys habituated to chair-restraint, received intravenous boli of human kisspeptin-10 (KP10, 50 microg), hCG (50 IU), and vehicle (1 ml) in both fed and 48-h fasting conditions. Plasma concentrations of glucose, cortisol and testosterone (T) were measured by using enzymatic and specific RIAs, respectively. KEY FINDINGS: The acute 48-h fasting decreased plasma glucose (P<0.01) and T (P<0.005) levels, and increased cortisol levels (P<0.05). KP10 administration caused a robust stimulation of T secretion in both fed and fasted monkeys. However, mean T concentration and T AUC after KP10 administration were significantly (P<0.01-0.005) reduced in fasted monkeys. Likewise, the time of the first significant increase in post-KP10 T levels was also significantly (P<0.01) delayed. T response to hCG stimulation was similar in fed and fasted monkeys. SIGNIFICANCE: The present results indicate that under fasting conditions the KP10 induced T response is delayed and suppressed. These data support the notion that fasting-induced suppression of the HPG axis in the adult male rhesus monkey may involve, at least in part, a reduction in the sensitivity of the GnRH neuronal network to endogenous kisspeptin stimulation.  相似文献   

6.
Hypoglycemia inhibits the hypothalamic-pituitary-gonadal (HPG) axis by still incompletely deciphered mechanisms. Many evidences suggest that the hypoglycemia-induced inhibition of the HPG axis involves alteration of the hypothalamic gonadotropin-releasing hormone (GnRH) release, but neuroendocrine factors responsible for this alteration are yet to be completely elucidated. The current study was carried out to ascertain whether insulin-induced hypoglycemic suppression of the HPG axis involves modulation of responsiveness of the GnRH neuron to kisspeptin and excitatory amino acids (EAA) drives. Five intact chair-restraint habituated adult male rhesus monkeys (Macaca mulatta) were given intravenous boli of GnRH, hCG, human kisspeptin-10 (KP10), NMDA (N-methyl-D, L-aspartate, an EAA analogue), and vehicle in both insulin (1 IU/kg)-induced hypoglycemic (IIH) and normal euglycemic conditions. Specific RIAs were used for measuring plasma cortisol and T concentrations. KP10 and NMDA administration stimulated significantly (p<0.005) T secretion in both euglycemic and hypoglycemic monkeys. Mean post-KP10 T concentrations and AUC were comparable between euglycemic and hypoglycemic monkeys. However, mean post-NMDA T levels and AUC in hypoglycemic animals were significantly lower (p<0.01-0.005) as compared to the corresponding values in euglycemic animals. T response to GnRH and hCG was similar between hypoglycemic and euglycemic monkeys. Vehicle did not affect plasma T concentrations in all conditions. Our results demonstrate that while the primate HPG axis response to kisspeptin stimulation remains intact that to EAA excitation is attenuated in hypoglycemic conditions, suggesting that hypogonadism in IIH is contributed, in part, by reduced sensitivity of the GnRH neurons to EAA signaling in the primate hypothalamus.  相似文献   

7.
Comparison of the effects of peripherally administered kisspeptins   总被引:1,自引:0,他引:1  
Kisspeptins are structurally closely related peptides derived from the Kiss1 gene that have been demonstrated to stimulate the hypothalamo-pituitary gonadal axis. The natural peptide products derived from post-translational processing of the kisspeptin precursor have not been elucidated. We examined the acute effect on serum levels of free testosterone in the adult male mouse after systemic administration of kisspeptins with different lengths of both human and mouse origin. Mouse kisspeptin-10 and -52 dose-dependently increased serum testosterone, and both peptides showed similar potency and efficacy. Human kisspeptin-10 and kisspeptin-54 evoked robust increase in serum testosterone, with the same potency as for mouse kisspeptins. Other members of the RFRP family of peptides, i.e. RFRP-1 and -3 were inactive. Time-course experiments revealed that the longer forms had a slower onset of action, and the long human form also a more prolonged effect. The effect of the peripherally administered mouse kisspeptin-10 could be totally blocked by the GnRH antagonist acyline. Finally, peripherally administered mouse kisspeptin-10 had no effect on Fos induction in GnRH cells. These data show that all peptides tested are active and supports the concept that their effect is mediated by a target upstream of the pituitary, such as the median eminence.  相似文献   

8.
The hypothalamic–pituitary–gonadal axis (HPG) plays vital roles in reproduction and steroid hormone production in both sexes. The focus of this review is upon gene structures, receptor structures and the signaling pathways of gonadotropin-releasing hormone (GnRH), luteinizing hormone (LH) and follicle-stimulating hormone (FSH). The hormones' functions in reproduction as well as consequences resulting from mutations are also summarized. Specific characteristics of hormones such as the pulsatile secretions of GnRH are also covered. The different regulators of the HPG axis are introduced including kisspeptin, activin, inhibin, follistatin, androgens and estrogen. This review includes not only their basic information, but also their unique function in the HPG axis. Here we view the HPG axis as a whole, so relations between ligands and receptors are well described crossing different levels of the HPG axis. Hormone interactions and transformations are also considered. The major information of this article is depicted in three figures summarizing the current discoveries on the HPG axis. This article systematically introduces the basic knowledge of the HPG axis and provides information of the current advances relating to reproductive hormones.  相似文献   

9.

Background

Microcystins LR (MC-LR) are hepatotoxic cyanotoxins that have been shown to induce reproductive toxicity, and Hypothalamic–Pituitary–Gonadal Axis (HPG) is responsible for the control of reproductive functions. However, few studies have been performed to evaluate the effects of MC-LR on HPG axis. This study aimed to investigate the MC-LR-induced toxicity in the reproductive system of mouse and focus on the HPG axis.

Methods

Adult male C57BL/6 mice were exposed to various concentrations of MC-LR (0, 3.75, 7.50, 15.00 and 30.00 µg/kg body weight per day) for 1 to 14 days, and it was found that exposure to different concentrations of MC-LR significantly disturbed sperm production in the mice testes in a dose- and time-dependent manner. To elucidate the associated possible mechanisms, the serum levels of testosterone, follicle-stimulating hormone (FSH) and luteinizing hormone (LH) were assessed. Meanwhile, PCR assays were employed to detect alterations in a series of genes involved in HPG axis, such as FSH, LH, gonadotropin-releasing hormone (GnRH) and their complement receptors. Furthermore, the effect of MC-LR on the viability and testosterone production of Leydig cells were tested in vitro. Results: MC-LR significantly impaired the spermatogenesis of mice possibly through the direct or indirect inhibition of GnRH synthesis at the hypothalamic level, which resulted in reduction of serum levels of LH that lead to suppression of testosterone production in the testis of mice.

Conclusions

MC-LR may be a GnRH toxin that would disrupt the reproductive system of mice.  相似文献   

10.
The hypothalamus plays a key role in the regulation of both energy homeostasis and reproduction. Evidence suggests that relaxin-3, a recently discovered member of the insulin superfamily, is an orexigenic hypothalamic neuropeptide. Relaxin-3 is thought to act in the brain via the RXFP3 receptor, although the RXFP1 receptor may also play a role. Relaxin-3, RXFP3, and RXFP1 are present in the hypothalamic paraventricular nucleus, an area with a well-characterized role in the regulation of energy balance that also modulates reproductive function by providing inputs to hypothalamic gonadotropin-releasing hormone (GnRH) neurons. Other members of the relaxin family are known to play a role in the regulation of reproduction. However, the effects of relaxin-3 on reproductive function are unknown. We studied the role of relaxin-3 in the regulation of the hypothalamo-pituitary-gonadal (HPG) axis. Intracerebroventricular (5 nmol) and intraparaventricular (540-1,620 pmol) administration of human relaxin-3 (H3) in adult male Wistar rats significantly increased plasma luteinizing hormone (LH) 30 min postinjection. This effect was blocked by pretreatment with a peripheral GnRH antagonist. Central administration of human relaxin-2 showed no significant effect on plasma LH. H3 dose-dependently stimulated the release of GnRH from hypothalamic explants and GT(1)-7 cells, which express RXFP1 and RXFP3, but did not influence LH or follicle-stimulating hormone release from pituitary fragments in vitro. We have demonstrated a novel role for relaxin-3 in the stimulation of the HPG axis, putatively via hypothalamic GnRH neurons. Relaxin-3 may act as a central signal linking nutritional status and reproductive function.  相似文献   

11.
哺乳动物的生殖功能受体内状态和外部环境综合作用的影响,这种综合作用通过错综复杂的神经内分泌系统最终汇集于促性腺激素释放激素(GnRH)系统从而影响下丘脑-垂体-性腺(HPG)轴的状态。神经激肽B(NKB)目前被认为是除kisspeptin外,调控GnRH脉冲分泌的又一关键因子。大量研究证实,NKB能够影响GnRH和促黄体激素(LH)的分泌,进而影响青春期的启动和生殖功能。然而,NKB对LH分泌的影响是刺激作用还是抑制作用尚存在争论。此外,NKB如何作用于GnRH神经元的信号通路尚不清楚,性激素是否参与这一生理过程,是目前的研究热点问题之一。本文就NKB及其受体的分布、神经网络结构、NKB对GnRH脉冲发生器的作用进行了系统的阐述,并针对目前尚待解决的一些问题进行了探讨。  相似文献   

12.
A study was conducted of the response of the pituitary-testicular axis to two different methods of administration of the luteinising hormone releasing hormone (LHRH) analogue ICI 118630 (Zoladex) in patients with prostatic cancer. The analogue was given by continuous infusion to four previously untreated patients with prostatic cancer for 60 days (group 1). Subsequently a further four patients were given a depot formulation of the same analogue by subcutaneous injection once every 28 days (group 2). Both methods of administration produced similar, successful suppression of luteinising hormone (LH) associated with a reduction of testosterone to castrate concentrations. The median basal testosterone concentrations before treatment in groups 1 and 2 were 20.6 and 14.1 nmol/l (5.94 and 4.07 ng/ml) respectively; these were reduced to 1.4 and 1.1 nmol/l (0.40 and 0.32 ng/ml) within four weeks of the start of treatment. The median basal LH concentration in groups 1 and 2 were 7.9 and 16.6 IU/1 respectively, which were suppressed to 2.6 and 2.4 IU/1 by four weeks. The suppression of LH and testosterone was maintained with continuous subcutaneous infusion for up to 60 days in group 1, and by subsequent injections of the depot every 28 days in group 2. The use of depot preparation of an LHRH analogue to suppress gonadotrophin and sex hormone secretion offers the convenience of once monthly injections when LHRH analogues are required for the long term treatment of elderly patients with prostatic cancer and children with precocious puberty.  相似文献   

13.
In order to determine the mechanism by which stress may affect the secretion and function of luteinizing hormone (LH) in primates, the response of the adrenal and gonadal axes was followed in male rhesus monkeys during brief restraint in primate chairs and during various hormone treatments. To further assess the responsiveness of the gonadal axis, gonadotropin releasing hormone (GnRH) was administered during the experiments. Corticosteroid levels were elevated throughout the first restraint trial as compared to those in subsequent trials. LH was elevated in the first sample of the first trial as compared to that in the following trials. The responses of LH to GnRH were equivalent in all trials, while the testosterone response to GnRH was attenuated in the first trial. A single injection of adrenocorti-cotropin (ACTH, 40 IU), while increasing circulating corticosteroids similarly to that observed during the first restraint trial, failed to cause an acute initial release of LH. However, ACTH did lower the testosterone response to GnRH. Following 5 days of ACTH treatment (40 IU twice daily), basal LH was suppressed, and the testosterone response to GnRH was decreased. Following 5 days of cortisol injections (100 mg twice daily), basal LH and testosterone were suppressed, but again only the testosterone response to GnRH was attenuated. Acute restraint stress, acting by some mechanism other than the activation of adrenal axis, stimulates a transient release of LH. While the stress-stimulated release of corticosteroids failed to affect the LH response following GnRH administration, it did act directly on the testes to prevent the normal release of testosterone. Finally, chronic elevation of corticosteroids, produced by ACTH or cortisol administration, suppressed basal serum LH and attenuated the response of testosterone to GnRH.  相似文献   

14.
The neuropeptide kisspeptin and its receptor are essential for activation of the hypothalamic-pituitary-gonadal (HPG) axis and regulating reproduction. While the role of kisspeptin in regulating the HPG axis in mammals has been well established, little is known about the functional ability of kisspeptins to activate the HPG axis and associated behavior in non-mammalian species. Here we experimentally examined the effects of kisspeptin on downstream release of testosterone and associated aggression and display behaviors in the side-blotched lizard (Uta stansburiana). We found that exogenous treatment with kisspeptin resulted in an increase in circulating testosterone levels, castration blocked the kisspeptin-induced increase in testosterone, and testosterone levels in kisspeptin-treated animals were positively related to frequency of aggressive behaviors. This evidence provides a clear link between kisspeptin, testosterone, and aggressive behavior in lizards. Thus, it is likely that kisspeptin plays an important role more broadly in non-mammalian systems in the regulation of reproductive physiology and related behaviors.  相似文献   

15.
To avoid breeding during unsuitable environmental or physiological circumstances, the reproductive axis adjusts its output in response to fluctuating internal and external conditions. The ability of the reproductive system to alter its activity appropriately in response to these cues has been well established. However, the means by which reproductively relevant cues are interpreted, integrated and relayed to the reproductive axis remain less well specified. The neuropeptide kisspeptin has been shown to be a potent positive stimulator of the hypothalamo-pituitary-gonadal (HPG) axis, suggesting a possible neural locus for the interpretation/integration of these cues. Because a failure to inhibit reproduction during winter would be maladaptive for short-lived female rodents, female Siberian hamsters (Phodopus sungorus) housed in long and short days were examined. In long "summer" photoperiods, kisspeptin is highly expressed in the anteroventral periventricular nucleus (AVPV), with low expression in the arcuate nucleus (Arc). A striking reversal in this pattern is observed in animals held in short, "winter" photoperiods, with negligible kisspeptin expression in the AVPV and marked staining in the Arc. Although all studies to date suggest that both populations act to stimulate the reproductive axis, these contrasting expression patterns of AVPV and Arc kisspeptin point to disparate roles for these two cell populations. Additionally, we found that the stimulatory actions of exogenous kisspeptin are blocked by acyline, a gonadotropin-releasing hormone (GnRH) receptor antagonist, suggesting an action of kisspeptin on the GnRH system rather than pituitary gonadotropes. Finally, females held in short day lengths exhibit a reduced response to exogenous kisspeptin treatment relative to long-day animals. Together, these findings indicate a role for kisspeptin in the AVPV and Arc as an upstream integration center for reproductively relevant stimuli and point to a dual mechanism of reproductive inhibition in which kisspeptin expression is reduced concomitant with reduced sensitivity of the HPG axis to this peptide.  相似文献   

16.
Reproduction is an event that requires the coordination of peripheral organs with the nervous system to ensure that the internal and external environments are optimal for successful procreation of the species. This is accomplished by the hypothalamic-pituitary-gonadal axis that coordinates reproductive behavior with ovulation. The primary signal from the central nervous system is gonadotropin-releasing hormone (GnRH), which modulates the activity of anterior pituitary gonadotropes regulating follicle stimulating hormone (FSH) and luteinizing hormone (LH) release. As ovarian follicles develop they release estradiol, which negatively regulates further release of GnRH and FSH. As estradiol concentrations peak they trigger the surge release of GnRH, which leads to LH release inducing ovulation. Release of GnRH within the central nervous system helps modulate reproductive behaviors providing a node at which control of reproduction is regulated. To address these issues, this review focuses on several critical questions. How is the HPG axis regulated in species with different reproductive strategies? What internal and external conditions modulate the synthesis and release of GnRH? How does GnRH modulate reproductive behavior within the hypothalamus? How does disease shift the activity of the HPG axis?  相似文献   

17.
Kisspeptins have emerged as potent elicitors of gonadotropin secretion and, therefore, putative targets for pharmacological intervention. In this context, desensitization of gonadotropin responses to continuous administration of kisspeptins has begun to be characterized, but information so far available is mostly restricted to LH responses in males, whereas the similar phenomenon in females, of obvious therapeutic interest, remains virtually unexplored. We report herein LH and FSH responses to continuous intracerebral administration of kisspeptin in female rats at different developmental and metabolic states. Infusion of kisspeptin-10 to adult female rats induced a transient elevation in serum LH concentrations, followed by a precipitous drop and normalization of LH levels thereafter. Elevation of LH after kisspeptin infusion was prolonged in underfed animals; a phenomenon mimicked by leptin administration. Conversely, FSH levels were persistently heightened along continuous kisspeptin infusion, but duration of this response was shortened by undernutrition. In pubertal females, LH and FSH levels remained elevated at the end of a 7-day infusion of kisspeptin; responses whose magnitude was augmented by subnutrition but not mimicked by leptin. In all settings, terminal gonadotropin-releasing hormone responses were fully preserved, suggesting that eventual desensitization must occur upstream from the pituitary. In summary, our current data document the pharmacological consequences of continuous administration of kisspeptin to female rats, with remarkable differences being detected between LH and FSH responses, in different developmental and metabolic states. These observations of potential pharmacological interest might help also to delineate the physiological roles of kisspeptins in the dynamic regulation of gonadotropin secretion in the female.  相似文献   

18.

Background

It is well established that sexual differentiation of the rodent hypothalamic-pituitary-gonadal (HPG) axis is principally orchestrated by estrogen during the perinatal period. Here we sought to better characterize the mechanistic role the beta form of the estrogen receptor (ERβ) plays in this process.

Methods

To achieve this, we exposed neonatal female rats to three doses (0.5, 1 and 2 mg/kg) of the ERβ selective agonist diarylpropionitrile (DPN) using estradiol benzoate (EB) as a positive control. Measures included day of vaginal opening, estrous cycle quality, GnRH and Fos co-localization following ovariectomy and hormone priming, circulating luteinizing hormone (LH) levels and quantification of hypothalamic kisspeptin immunoreactivity. A second set of females was then neonatally exposed to DPN, the ERα agonist propyl-pyrazole-triol (PPT), DPN+PPT, or EB to compare the impact of ERα and ERβ selective agonism on kisspeptin gene expression in pre- and post-pubescent females.

Results

All three DPN doses significantly advanced the day of vaginal opening and induced premature anestrus. GnRH and Fos co-labeling, a marker of GnRH activation, following ovariectomy and hormone priming was reduced by approximately half at all doses; the magnitude of which was not as large as with EB or what we have previously observed with the ERα agonist PPT. LH levels were also correspondingly lower, compared to control females. No impact of DPN was observed on the density of kisspeptin immunoreactive (-ir) fibers or cell bodies in the arcuate (ARC) nucleus, and kisspeptin-ir was only significantly reduced by the middle (1 mg/kg) DPN dose in the preoptic region. The second experiment revealed that EB, PPT and the combination of DPN+PPT significantly abrogated preoptic Kiss1 expression at both ages but ARC expression was only reduced by EB.

Conclusion

Our results indicate that selective agonism of ERβ is not sufficient to completely achieve male-typical HPG organization observed with EB or an ERα agonist.  相似文献   

19.
Kisspeptins are peptide hormones encoded by the KiSS-1 gene, and act as the principal positive regulator of the reproductive axis by directly stimulating gonadotropin-releasing hormone (GnRH) neuron activity. We recently observed that kisspeptin-10 (the minimal kisspeptin sequence necessary for receptor activation) also has a direct stimulating effect on luteinizing hormone (LH) secretion in bovine anterior pituitary (AP) cells. In the present study, we evaluated the direct effect of kisspeptin-10 on the secretion of other pituitary hormones, growth hormone (GH) and prolactin (PRL), from bovine AP cells. The AP cells, which were prepared from 1- or 8-month-old male calves, were incubated for 2h with the peptides. Kisspeptin-10 at 100 nM (P<0.05), 1000 nM (P<0.01) and 10,000 nM (P<0.01), but not at 10 nM, significantly stimulated GH secretion from the AP cells of 1-month-old calves, while in 8-month-old calves it was significantly (P<0.05) stimulated at 1000 nM (P<0.01) and 10,000 nM (P<0.01), but not at 10nM and 100 nM. The response of GH to 100 nM (P<0.01), 1000 nM (P<0.05) and 10,000 nM (P<0.01) kisspeptin-10 in the AP cells of 1-month-old calves was significantly greater than in those of 8-month-old calves. All tested doses of kisspeptin-10 had no effect on PRL secretion from AP cells of 1-month-old calves. However, 1000 nM (P<0.05) and 10,000 nM (P<0.01), but not lower concentrations, of kisspeptin-10 significantly stimulated PRL secretion from the AP cells of 8-month-old calves. The present study is, as far as we know, the first to examine the direct actions of kisspeptin on the secretion of GH and PRL from the bovine pituitary gland. Further studies are necessary to evaluate the importance of multiple actions of kisspeptin on the pituitary of various animals in vivo.  相似文献   

20.
The effects of changes in pulse frequency of exogenously infused gonadotropin-releasing hormone (GnRH) were investigated in 6 adult surgically hypothalamo/pituitary-disconnected (HPD) gonadal-intact rams. Ten-minute sampling in 16 normal animals prior to HPD showed endogenous luteinizing hormone (LH) pulses occurring every 2.3 h with a mean pulse amplitude of 1.11 +/- 0.06 (SEM) ng/ml. Mean testosterone and follicle-stimulating hormone (FSH) concentrations were 3.0 +/- 0.14 ng/ml and 0.85 +/- 0.10 ng/ml, respectively. Before HPD, increasing single doses of GnRH (50-500 ng) elicited a dose-dependent rise of LH, 50 ng producing a response of similar amplitude to those of spontaneous LH pulses. The effects of varying the pulse frequency of a 100-ng GnRH dose weekly was investigated in 6 HPD animals; the pulse intervals explored were those at 1, 2, and 4 h. The pulsatile GnRH treatment was commenced 2-6 days after HPD when plasma testosterone concentrations were in the castrate range (less than 0.5 ng/ml) in all animals. Pulsatile LH and testosterone secretion was reestablished in all animals in the first 7 days by 2-h GnRH pulses, but the maximal pulse amplitudes of both hormones were only 50 and 62%, respectively, of endogenous pulses in the pre-HPD state. The plasma FSH pattern was nonpulsatile and FSH concentrations gradually increased in the first 7 days, although not to the pre-HPD range. Increasing GnRH pulse frequency from 2- to 1-hour immediately increased the LH baseline and pulse amplitude. As testosterone concentrations increased, the LH responses declined in a reciprocal fashion between Days 2 and 7. FSH concentration decreased gradually over the 7 days at the 1-h pulse frequency. Slowing the GnRH pulse to a 4-h frequency produced a progressive fall in testosterone concentrations, even though LH baselines were unchanged and LH pulse amplitudes increased transiently. FSH concentrations were unaltered during the 4-h regime. These results show that 1) the pulsatile pattern of LH and testosterone secretion in HPD rams can be reestablished by exogenous GnRH, 2) the magnitude of LH, FSH, and testosterone secretion were not fully restored to pre-HPD levels by the GnRH dose of 100 ng per pulse, and 3) changes in GnRH pulse frequency alone can influence both gonadotropin and testosterone secretion in the HPD model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号