共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
Han JC Park SY Hah BG Choi GH Kim YK Kwon TH Kim EK Lachaal M Jung CY Lee W 《Archives of biochemistry and biophysics》2003,413(2):213-220
Cadmium (Cd) has been known to cause hyperglycemia with diabetes-related complications in experimental animals; however, the molecular basis underlying this Cd-induced hyperglycemia is not known. Here, we report the novel finding that the impaired glucose tolerance (IGT) in rats induced by CdCl(2) is accompanied by a drastic (by as much as 90%) and dose-dependent reduction in GLUT4 protein and GLUT4 mRNA levels in adipocytes. The effect was specific to GLUT4; neither GLUT1 nor insulin-responsive aminopeptidase in adipocytes was affected. GLUT2 in hepatocytes was also not affected. Interestingly, the effect on GLUT4 was also specific to adipocytes; the muscle tissues of the Cd-treated rats showed only a slight (<25%) reduction in GLUT4 protein level with no change in GLUT4 message level, and again with no change in GLUT1 protein and its message levels. Although the insulin-induced GLUT4 translocation in adipocytes was not affected by the Cd treatment, the 3-O-methy-D-glucose flux in insulin-stimulated adipocytes of Cd-treated rat was drastically reduced. Together these findings clearly demonstrate that Cd induces IGT in rats by selectively down-regulating GLUT4 expression in adipocytes. 相似文献
8.
9.
10.
Toth JI Datta S Athanikar JN Freedman LP Osborne TF 《Molecular and cellular biology》2004,24(18):8288-8300
11.
Akt mediates insulin induction of glucose uptake and up-regulation of GLUT4 gene expression in brown adipocytes 总被引:4,自引:0,他引:4
Insulin acutely stimulated glucose uptake in rat primary brown adipocytes in a PI3-kinase-dependent but p70S6-kinase-independent manner. Since Akt represents an intermediate step between these kinases, this study investigated the contribution of Akt to insulin-induced glucose uptake by the use of a chemical compound, ML-9, as well as by transfection with a dominant-negative form of Akt (DeltaAkt). Pretreatment with ML-9 for 10 min completely inhibited insulin stimulation of (1) Akt kinase activity, (2) Akt phosphorylation on the regulatory residue Ser473 but not on Thr308, and (3) mobility shift in Akt1 and Akt2. However, ML-9 did not affect insulin-stimulated PI3-kinase nor PKCzeta activities. In consequence, ML-9 precluded insulin stimulation of glucose uptake and GLUT4 translocation to plasma membrane (determined by Western blot), without any effect on the basal glucose uptake. Moreover, DeltaAkt impaired insulin stimulation of glucose uptake and GFP-tagged GLUT4 translocation to plasma membrane in transiently transfected immortalised brown adipocytes and HeLa cells, respectively. Furthermore, ML-9 treatment for 6 h down-regulated insulin-induced GLUT4 mRNA accumulation, without affecting GLUT1 expression, in a similar fashion as LY294002. Indeed, co-transfection of brown adipocytes with DeltaAkt precluded the transactivation of GLUT4-CAT promoter by insulin in a similar fashion as a dominant-negative form of PI3-kinase. Our results indicate that activation of Akt may be an essential requirement for insulin regulation of glucose uptake and GLUT4 gene expression in brown adipocytes. 相似文献
12.
13.
Endo M Masaki T Seike M Yoshimatsu H 《Experimental biology and medicine (Maywood, N.J.)》2007,232(5):614-621
We investigated the effect of tumor necrosis factor-alpha (TNF-alpha), a member of the proinflammatory cytokine family, on steatosis of the mouse liver by analyzing morphological changes and hepatic triglyceride content in response to TNF-alpha. We also examined expression of the sterol regulatory element binding protein-1c gene. Intraperitoneal injection of TNF-alpha acutely and dramatically accelerated the accumulation of fat in the liver, as evidenced by histological analysis and hepatic triglyceride content. This treatment increased liver weight, increased serum levels of free fatty acids, and increased fatty acid synthase and sterol regulatory element binding protein-1c mRNA expression. Furthermore, intraperitoneal injection of lipopolysaccaride (LPS) to induce TNF-alpha expression also accelerated hepatic fat accumulation. Pretreatment with anti-TNF-alpha antibody attenuated the development of LPS-induced fatty change in the liver. Antibody pretreatment not only decreased sterol regulatory element binding protein-1c expression in LPS-treated mice but also attenuated the expression of suppressors of cytokine signaling-3 mRNA. This study suggests that TNF-alpha, acting downstream of LPS, increases intrahepatic fat deposition by affecting hepatic lipogenetic metabolism involving sterol regulatory element binding protein-1c. 相似文献
14.
15.
Le Lay S Lefrère I Trautwein C Dugail I Krief S 《The Journal of biological chemistry》2002,277(38):35625-35634
16.
17.
18.
Liao W Nguyen MT Yoshizaki T Favelyukis S Patsouris D Imamura T Verma IM Olefsky JM 《American journal of physiology. Endocrinology and metabolism》2007,293(1):E219-E227
Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) plays a critical role in regulating insulin sensitivity and glucose homeostasis. In this study, we identified highly efficient small interfering RNA (siRNA) sequences and used lentiviral short hairpin RNA and electroporation of siRNAs to deplete PPAR-gamma from 3T3-L1 adipocytes to elucidate its role in adipogenesis and insulin signaling. We show that PPAR-gamma knockdown prevented adipocyte differentiation but was not required for maintenance of the adipocyte differentiation state after the cells had undergone adipogenesis. We further demonstrate that PPAR-gamma suppression reduced insulin-stimulated glucose uptake without affecting the early insulin signaling steps in the adipocytes. Using dual siRNA strategies, we show that this effect of PPAR-gamma deletion was mediated by both GLUT4 and GLUT1. Interestingly, PPAR-gamma-depleted cells displayed enhanced inflammatory responses to TNF-alpha stimulation, consistent with a chronic anti-inflammatory effect of endogenous PPAR-gamma. In summary, 1) PPAR-gamma is essential for the process of adipocyte differentiation but is less necessary for maintenance of the differentiated state, 2) PPAR-gamma supports normal insulin-stimulated glucose transport, and 3) endogenous PPAR-gamma may play a role in suppression of the inflammatory pathway in 3T3-L1 cells. 相似文献
19.
Physiological differences in lipid metabolism exist according to adipose sites. To delineate at which step such gene regulation could occur, mRNA levels of various proteins involved in the overall lipogenic process were determined in subcutaneous (SC) and retroperitoneal (RP) adipose tissues. Fatty acid synthase, malic enzyme, ATP citrate lyase, insulin-sensitive glucose transporter, and glucose-6-phosphate dehydrogenase mRNA levels were coordinately reduced (by up to 50-fold) during fasting in RP and in SC relative to fed rats, and restored or overexpressed (by up to 5- to 6-fold) during refeeding. The response was most often delayed and lower in SC compared to RP. This could contribute to site-specific differences. Interestingly, SREBP-1c mRNA levels were markedly decreased by fasting in SC but remained unchanged in RP. Refeeding tended to restore levels close to fed group values. We conclude that mRNA levels of SREBP-1c do not coincide with the expected changes in adipose lipogenic gene expression of fasted/refed rats. 相似文献
20.
Miura S Tsunoda N Ikeda S Kai Y Cooke DW Lane MD Ezaki O 《Biochemical and biophysical research communications》2004,325(3):812-818
Previous studies demonstrated that an adipose tissue-specific element(s) (ASE) of the murine GLUT4 gene is located between −551 and −506 in the 5′-flanking sequence and that a high-fat responsive element(s) for down-regulation of the GLUT4 gene is located between bases −701 and −552. A binding site for nuclear factor 1 (NF1), that mediates insulin and cAMP-induced repression of GLUT4 in 3T3-L1 adipocytes is located between bases −700 and −688. To examine the role of NF1 in the regulation of GLUT4 gene expression in white adipose tissues (WAT) in vivo, we created two types of transgenic mice harboring mutated either 5′ or 3′ half-site of NF1-binding sites in GLUT4 minigene constructs. In both cases, the GLUT4 minigene was not expressed in WAT, while expression was maintained in brown adipose tissue, skeletal muscle, and heart. This was an unexpected finding, since a −551 GLUT4 minigene that did not have the NF1-binding site was expressed in WAT. We propose a model that explains the requirement for both the ASE and the NF1-binding site for expression of GLUT4 in WAT. 相似文献