首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
There is a strong demand from the wine industry for methodologies to reduce the alcohol content of wine without compromising wine''s sensory characteristics. We assessed the potential of adaptive laboratory evolution strategies under hyperosmotic stress for generation of Saccharomyces cerevisiae wine yeast strains with enhanced glycerol and reduced ethanol yields. Experimental evolution on KCl resulted, after 200 generations, in strains that had higher glycerol and lower ethanol production than the ancestral strain. This major metabolic shift was accompanied by reduced fermentative capacities, suggesting a trade-off between high glycerol production and fermentation rate. Several evolved strains retaining good fermentation performance were selected. These strains produced more succinate and 2,3-butanediol than the ancestral strain and did not accumulate undesirable organoleptic compounds, such as acetate, acetaldehyde, or acetoin. They survived better under osmotic stress and glucose starvation conditions than the ancestral strain, suggesting that the forces that drove the redirection of carbon fluxes involved a combination of osmotic and salt stresses and carbon limitation. To further decrease the ethanol yield, a breeding strategy was used, generating intrastrain hybrids that produced more glycerol than the evolved strain. Pilot-scale fermentation on Syrah using evolved and hybrid strains produced wine with 0.6% (vol/vol) and 1.3% (vol/vol) less ethanol, more glycerol and 2,3-butanediol, and less acetate than the ancestral strain. This work demonstrates that the combination of adaptive evolution and breeding is a valuable alternative to rational design for remodeling the yeast metabolic network.  相似文献   

2.
Six commercial wine yeast strains and three nonindustrial strains (two laboratory strains and one haploid strain derived from a wine yeast strain) were engineered to produce large amounts of glycerol with a lower ethanol yield. Overexpression of the GPD1 gene, encoding a glycerol-3-phosphate dehydrogenase, resulted in a 1.5- to 2.5-fold increase in glycerol production and a slight decrease in ethanol formation under conditions simulating wine fermentation. All the strains overexpressing GPD1 produced a larger amount of succinate and acetate, with marked differences in the level of these compounds between industrial and nonindustrial engineered strains. Acetoin and 2,3-butanediol formation was enhanced with significant variation between strains and in relation to the level of glycerol produced. Wine strains overproducing glycerol at moderate levels (12 to 18 g/liter) reduced acetoin almost completely to 2,3-butanediol. A lower biomass concentration was attained by GPD1-overexpressing strains, probably due to high acetaldehyde production during the growth phase. Despite the reduction in cell numbers, complete sugar exhaustion was achieved during fermentation in a sugar-rich medium. Surprisingly, the engineered wine yeast strains exhibited a significant increase in the fermentation rate in the stationary phase, which reduced the time of fermentation.  相似文献   

3.
Glycerol and other fermentation products of apiculate wine yeasts   总被引:5,自引:2,他引:3  
Ninety-six strains of apiculate wine yeasts were studied for their ability to produce glycerol, acetaldehyde, ethyl acetate, sulphur dioxide and hydrogen sulphide in synthetic medium. Hanseniaspora guilliermondii produced smaller quantities of glycerol, acetaldehyde and hydrogen sulphide than Kloeckera apiculata , whereas the production of ethyl acetate and sulphur dioxide was found to be similar. Strains characterized by different capacities and properties were found for both species. The existence of apiculate strains differing in secondary compound production is of technological interest, as these yeasts constitute potential flavour producers. Selected strains of apiculate yeasts might favour an enhanced flavour formation and yield desirable characteristics to the final product.  相似文献   

4.
A total of 37 strains of Kloeckera apiculata was isolated during the spontaneous fermentation of star fruit must. Each strain was differentiated from the others on the basis of its capacity to produce acetaldehyde, ethyl acetate, higher alcohols, acetoin and acetic acid. All the strains were characterized by the low production of higher alcohols and the high production of ethyl acetate, whereas consistent differences in the production of acetaldehyde, acetoin and acetic acid served to differentiate star fruit apiculate strains into six different phenotypes, present at different stages of the fermentation process. The metabolic strain diversity found can be interpreted as a natural consequence of environmental conditions, which influenced the frequency and selection of specific apiculate strains. From the biotechnological point of view the different metabolic biotypes represent an important source of strains for potential use as starter cultures for star fruit fermentation.  相似文献   

5.
The utilization of Saccharomyces cerevisiae strains overproducing glycerol and with a reduced ethanol yield is a potentially valuable strategy for producing wine with decreased ethanol content. However, glycerol overproduction is accompanied by acetate accumulation. In this study, we evaluated the effects of the overexpression of GPD1, coding for glycerol-3-phosphate dehydrogenase, in three commercial wine yeast strains in which the two copies of ALD6 encoding the NADP+-dependent Mg2+-activated cytosolic acetaldehyde dehydrogenase have been deleted. Under wine fermentation conditions, the engineered industrial strains exhibit fermentation performance and growth properties similar to those of the wild type. Acetate was produced at concentrations similar to that of the wild-type strains, whereas sugar was efficiently diverted to glycerol. The ethanol yield of the GPD1 ald6 industrial strains was 15 to 20% lower than that in the controls. However, these strains accumulated acetoin at considerable levels due to inefficient reduction to 2,3-butanediol. Due to the low taste and odor thresholds of acetoin and its negative sensorial impact on wine, novel engineering strategies will be required for a proper adjustment of the metabolites at the acetaldehyde branch point.  相似文献   

6.
The utilization of Saccharomyces cerevisiae strains overproducing glycerol and with a reduced ethanol yield is a potentially valuable strategy for producing wine with decreased ethanol content. However, glycerol overproduction is accompanied by acetate accumulation. In this study, we evaluated the effects of the overexpression of GPD1, coding for glycerol-3-phosphate dehydrogenase, in three commercial wine yeast strains in which the two copies of ALD6 encoding the NADP+-dependent Mg2+-activated cytosolic acetaldehyde dehydrogenase have been deleted. Under wine fermentation conditions, the engineered industrial strains exhibit fermentation performance and growth properties similar to those of the wild type. Acetate was produced at concentrations similar to that of the wild-type strains, whereas sugar was efficiently diverted to glycerol. The ethanol yield of the GPD1 ald6 industrial strains was 15 to 20% lower than that in the controls. However, these strains accumulated acetoin at considerable levels due to inefficient reduction to 2,3-butanediol. Due to the low taste and odor thresholds of acetoin and its negative sensorial impact on wine, novel engineering strategies will be required for a proper adjustment of the metabolites at the acetaldehyde branch point.  相似文献   

7.
Acetic acid plays a crucial role in the organoleptic balance of many fermented products. We have investigated the factors controlling the production of acetate by Saccharomyces cerevisiae during alcoholic fermentation by metabolic engineering of the enzymatic steps involved in its formation and its utilization. The impact of reduced pyruvate decarboxylase (PDC), limited acetaldehyde dehydrogenase (ACDH), or increased acetoacetyl coenzyme A synthetase (ACS) levels in a strain derived from a wine yeast strain was studied during alcoholic fermentation. In the strain with the PDC1 gene deleted exhibiting 25% of the PDC activity of the wild type, no significant differences were observed in the acetate yield or in the amounts of secondary metabolites formed. A strain overexpressing ACS2 and displaying a four- to sevenfold increase in ACS activity did not produce reduced acetate levels. In contrast, strains with one or two disrupted copies of ALD6, encoding the cytosolic Mg(2+)-activated NADP-dependent ACDH and exhibiting 60 and 30% of wild-type ACDH activity, showed a substantial decrease in acetate yield (the acetate production was 75 and 40% of wild-type production, respectively). This decrease was associated with a rerouting of carbon flux towards the formation of glycerol, succinate, and butanediol. The deletion of ALD4, encoding the mitochondrial K(+)-activated NAD(P)-linked ACDH, had no effect on the amount of acetate formed. In contrast, a strain lacking both Ald6p and Ald4p exhibited a long delay in growth and acetate production, suggesting that Ald4p can partially replace the Ald6p isoform. Moreover, the ald6 ald4 double mutant was still able to ferment large amounts of sugar and to produce acetate, suggesting the contribution of another member(s) of the ALD family.  相似文献   

8.
Glycerol formation is vital for reoxidation of nicotinamide adenine dinucleotide (reduced form; NADH) under anaerobic conditions and for the hyperosmotic stress response in the yeast Saccharomyces cerevisiae. However, relatively few studies have been made on hyperosmotic stress under anaerobic conditions. To study the combined effect of salt stress and anaerobic conditions, industrial and laboratory strains of S. cerevisiae were grown anaerobically on glucose in batch-cultures containing 40 g/l NaCl. The time needed for complete glucose conversion increased considerably, and the specific growth rates decreased by 80–90% when the cells were subjected to the hyperosmotic conditions. This was accompanied by an increased yield of glycerol and other by-products and reduced biomass yield in all strains. The slowest fermenting strain doubled its glycerol yield (from 0.072 to 0.148 g/g glucose) and a nearly fivefold increase in acetate formation was seen. In more tolerant strains, a lower increase was seen in the glycerol and in the acetate, succinate and pyruvate yields. Additionally, the NADH-producing pathway from acetaldehyde to acetate was analysed by overexpressing the stress-induced gene ALD3. However, this had no or very marginal effect on the acetate and glycerol yields. In the control experiments, the production of NADH from known sources well matched the glycerol formation. This was not the case for the salt stress experiments in which the production of NADH from known sources was insufficient to explain the formed glycerol.  相似文献   

9.
Aims:  The main goal of the present study is to determine the effects of different nitrogen concentrations and glucose/fructose ratios on the fermentation performance of Saccharomyces paradoxus , a nonconventional species used for winemaking.
Methods and Results:  Ethanol yield, residual sugar concentration, as well as glycerol and acetic acid production were determined for diverse wine fermentations conducted by S. paradoxus . Experiments were also carried out with a commercial Saccharomyces cerevisiae wine strain used as control. The values obtained were compared to test significant differences by means of a factorial anova and the Scheffé test. Our results show that S. paradoxus strain was able to complete the fermentation even in the nonoptimal conditions of low nitrogen content and high fructose concentration. In addition, the S. paradoxus strain showed significant higher glycerol synthesis and lower acetic acid production than S. cerevisiae in media enriched with nitrogen, as well as a lower, but not significant, ethanol yield.
Conclusions:  The response of S. paradoxus was different with respect to the commercial S. cerevisiae strain, especially to glycerol and acetic acid synthesis.
Significance and Impact of the Study:  The present study has an important implication for the implementation of S. paradoxus strains as new wine yeast starters exhibiting interesting enological properties.  相似文献   

10.
11.
Fourteen strains of the yeastSaccharomyces cerevisiae were isolated from three wineries in the Salnés wine region (N.W. Spain) at the three different periods of the natural fermentation. Each wild yeast was screened for production of acetaldehyde, ethyl acetate, isobutanol,n-propanol, amylic alcohol and other important enological compounds during laboratory scale fermentations of grape juice. After 25 days at 20°C, the analytical results evidenced variations in the production of acetaldehyde (from 13.1 to 24.3 mg/l), isobutanol (from 27.7 to 51.1 mg/l), amyl alcohols (from 111 to 183 mg/l) and ethyl acetate (from 19.3 to 43.7 mg/l). Although isolated from the same wine region, differences in the wine composition were observed depending on the particular yeast strain used for the vinification experiments.  相似文献   

12.
Acetic acid plays a crucial role in the organoleptic balance of many fermented products. We have investigated the factors controlling the production of acetate by Saccharomyces cerevisiae during alcoholic fermentation by metabolic engineering of the enzymatic steps involved in its formation and its utilization. The impact of reduced pyruvate decarboxylase (PDC), limited acetaldehyde dehydrogenase (ACDH), or increased acetoacetyl coenzyme A synthetase (ACS) levels in a strain derived from a wine yeast strain was studied during alcoholic fermentation. In the strain with the PDC1 gene deleted exhibiting 25% of the PDC activity of the wild type, no significant differences were observed in the acetate yield or in the amounts of secondary metabolites formed. A strain overexpressing ACS2 and displaying a four- to sevenfold increase in ACS activity did not produce reduced acetate levels. In contrast, strains with one or two disrupted copies of ALD6, encoding the cytosolic Mg2+-activated NADP-dependent ACDH and exhibiting 60 and 30% of wild-type ACDH activity, showed a substantial decrease in acetate yield (the acetate production was 75 and 40% of wild-type production, respectively). This decrease was associated with a rerouting of carbon flux towards the formation of glycerol, succinate, and butanediol. The deletion of ALD4, encoding the mitochondrial K+-activated NAD(P)-linked ACDH, had no effect on the amount of acetate formed. In contrast, a strain lacking both Ald6p and Ald4p exhibited a long delay in growth and acetate production, suggesting that Ald4p can partially replace the Ald6p isoform. Moreover, the ald6 ald4 double mutant was still able to ferment large amounts of sugar and to produce acetate, suggesting the contribution of another member(s) of the ALD family.  相似文献   

13.
One hundred and fifteen Saccharomyces cerevisiae strains from Aglianico del Vulture, a red wine produced in Southern Italy, were characterized for the production of some secondary compounds involved in the aroma and taste of alcoholic beverages. The strains exhibited a uniform behaviour in the production levels of n-propanol, active amyl alcohol and ethyl acetate, whereas isobutanol, isoamyl alcohol and acetaldehyde were formed with a wide variability. Only five strains produced wines close to the reference Aglianico del Vulture wine for the traits considered. Of these, two strains were selected, underwent to tetrad analysis and the single spore cultures were tested in grape must fermentation. The progeny of one strain showed a significant metabolic variability, confirming the necessity to test starter cultures for the segregation of traits of technological interest. Our findings suggest the selection of specific strains for specific fermentations as a function of the vine variety characteristics in order to take the major advantage from the combination grape must/S. cerevisiae strain.  相似文献   

14.
Screening tests carried out for 10 strains of Candida stellata confirmed high levels of glycerol production, although a low fermentation rate and reduced ethanol content were observed. To overcome the poor competition with Saccharomyces cerevisiae, fermentation tests with immobilized C. stellata cells, alone or in combination with S. cerevisiae, have been carried out. The immobilization of C. stellata cells consistently reduced the fermentation length when compared with that obtained with free cells, immobilized cells exhibiting about a 30-and a 2-fold improvement in fermentation rate compared with rates for C. stellata and S. cerevisiae free cells, respectively. Moreover, immobilized C. stellata cells produced a twofold increase in ethanol content and a strong reduction in acetaldehyde and acetoin production in comparison with levels for free cells. The evaluation of different combinations of C. stellata immobilized cells and S. cerevisiae showed interesting results with regard to analytical profiles for practical application in wine making. In fact, analytical profiles of combinations showed, apart from a high glycerol content, a reduction in the amounts of acetic acid and higher alcohols and a consistent increase in succinic acid content in comparison with values for the S. cerevisiae control strain. Sequential fermentation first with immobilized C. stellata cells and then after 3 days with an added inoculum of S. cerevisiae free cells was the best combination, producing 15.10 g of glycerol per liter, i.e., 136% more than the S. cerevisiae control strain produced. Fermentation with immobilized C. stellata cells could be an interesting process by which to enhance glycerol content in wine.  相似文献   

15.
AIMS: This study investigated the in vitro effects of water activity (a(w); 0.85-0.987) and temperature (10-40 degrees C) on growth and ochratoxin A (OTA) production by two strains of Aspergillus carbonarius isolated from wine grapes from three different European countries and Israel on a synthetic grape juice medium representative of mid-veraison (total of eight strains). METHODS AND RESULTS: The synthetic grape juice medium was modified with glycerol or glucose and experiments carried out for up to 56 days for growth and 25 days for OTA production. The lag phase prior to growth, growth rates and ochratoxin production were quantified. Statistical comparisons were made of all factors and multiple regression analysis used to obtain surface response curves of a(w) x temperature for the eight strains and optimum growth and OTA production by A. carbonarius. The lag phase increased from <1 day at 25-35 degrees C and 0.98 a(w) to >20 days at marginal temperatures and water availabilities. Generally, most A. carbonarius strains grew optimally at 30-35 degrees C, regardless of solute used to modify a(w), with no growth at <15 degrees C. The optimum a(w) for growth varied from 0.93 to 0.987 depending on the strain, with the widest a(w) tolerance at 25-30 degrees C. There was no direct relationship among growth, environmental factors and country of origin of individual strains. Optimum conditions for OTA production varied with strain. Some strains produced optimal OTA at 15-20 degrees C and 0.95-98 a(w). The maximum OTA produced after 10 days was about 0.6-0.7 microg g(-1), with a mean production over all eight strains of 0.2 microg g(-1) at optimum environmental conditions. CONCLUSIONS: This work demonstrates that optimum conditions for OTA production are very different from those for growth. While growth rates differed significantly between strains, integration of the OTA production data suggests possible benefits for use of the information on a regional basis. SIGNIFICANCE AND IMPACT OF THE STUDY: Very little detailed information has previously been available on the ecology of A. carbonarius. This knowledge is critical in the development and prediction of the risk models of contamination of grapes and grape products by this species under fluctuating and interacting environmental parameters.  相似文献   

16.
Saccharomyces cerevisiae has evolved a highly efficient strategy for energy generation which maximizes ATP energy production from sugar. This adaptation enables efficient energy generation under anaerobic conditions and limits competition from other microorganisms by producing toxic metabolites, such as ethanol and CO(2). Yeast fermentative and flavor capacity forms the biotechnological basis of a wide range of alcohol-containing beverages. Largely as a result of consumer demand for improved flavor, the alcohol content of some beverages like wine has increased. However, a global trend has recently emerged toward lowering the ethanol content of alcoholic beverages. One option for decreasing ethanol concentration is to use yeast strains able to divert some carbon away from ethanol production. In the case of wine, we have generated and evaluated a large number of gene modifications that were predicted, or known, to impact ethanol formation. Using the same yeast genetic background, 41 modifications were assessed. Enhancing glycerol production by increasing expression of the glyceraldehyde-3-phosphate dehydrogenase gene, GPD1, was the most efficient strategy to lower ethanol concentration. However, additional modifications were needed to avoid negatively affecting wine quality. Two strains carrying several stable, chromosomally integrated modifications showed significantly lower ethanol production in fermenting grape juice. Strain AWRI2531 was able to decrease ethanol concentrations from 15.6% (vol/vol) to 13.2% (vol/vol), whereas AWRI2532 lowered ethanol content from 15.6% (vol/vol) to 12% (vol/vol) in both Chardonnay and Cabernet Sauvignon juices. Both strains, however, produced high concentrations of acetaldehyde and acetoin, which negatively affect wine flavor. Further modifications of these strains allowed reduction of these metabolites.  相似文献   

17.
A total of 78 strains of non-Saccharomyces yeasts were isolated: 30 strains of Kloeckera apiculata, 20 of Candida stellata, 8 of Candida valida and 20 of Zygosaccharomyces fermentati. The diversity of yeast species and strains was monitored by determining the formation of secondary products of fermentation, such as acetaldehyde, ethyl acetate and higher alcohols. Within each species, the strains were distinguishable in phenotypes through the production of different amounts of by-products. In particular, a great variability was found in C. stellata, where six different phenotypes were identified by means of the production of acetaldehyde, ethyl acetate, isobutanol and isoamyl alcohol. At different stages of the spontaneous fermentation different phenotypes of the non-Saccharomyces yeasts were represented, characterized by consistent differences in some by-products involved in the wine bouquet, such as acetaldehyde.  相似文献   

18.
Saccharomyces cerevisiae maintains a redox balance under fermentative growth conditions by re-oxidizing NADH formed during glycolysis through ethanol formation. Excess NADH stimulates the synthesis of mainly glycerol, but also of other compounds. Here, we investigated the production of primary and secondary metabolites in S. cerevisiae strains where the glycerol production pathway was inactivated through deletion of the two glycerol-3-phosphate dehydrogenases genes (GPD1/GPD2) and replaced with alternative NAD+-generating pathways. While these modifications decreased fermentative ability compared to the wild-type strain, all improved growth and/or fermentative ability of the gpd1Δgpd2Δ strain in self-generated anaerobic high sugar medium. The partial NAD+ regeneration ability of the mutants resulted in significant amounts of alternative products, but at lower yields than glycerol. Compared to the wild-type strain, pyruvate production increased in most genetically manipulated strains, whereas acetate and succinate production decreased in all strains. Malate production was similar in all strains. Isobutanol production increased substantially in all genetically manipulated strains compared to the wild-type strain, whereas only mutant strains expressing the sorbitol producing SOR1 and srlD genes showed increases in isoamyl alcohol and 2-phenyl alcohol. A marked reduction in ethyl acetate concentration was observed in the genetically manipulated strains, while isobutyric acid increased. The synthesis of some primary and secondary metabolites appears more readily influenced by the NAD+/NADH availability. The data provide an initial assessment of the impact of redox balance on the production of primary and secondary metabolites which play an essential role in the flavour and aroma character of beverages.  相似文献   

19.
Analysis of variance was used to evaluate the simultaneous effects of strain, incubation temperature (15 to 25 degrees C), agitation time (0 to 24 h), and initial sulfite concentration (100 to 300 ppm) on glycerol production in grape juice by Saccharomyces cerevisiae. Fourteen strains were studied to determine their growth patterns in the presence of sulfites and ethanol. Baker's yeast strains were more sensitive to sulfite than wine strains, and little growth occurred at initial sulfite levels greater than 150 ppm. Sensitivity to sulfite increased with increasing levels of ethanol. Three strains exhibiting the best growth in the presence of sulfites and ethanol were selected for interaction studies. Fermentations were carried out until the solids content had decreased to less than 6 degrees Brix, which was the point that glycerol content became stable. For the three strains used, the greatest level of glycerol production was observed in the presence of 300 ppm of sulfite for most incubation temperatures and agitation times. There was significant interaction between the strain, incubation temperature, and agitation time parameters for glycerol synthesis, and a response surface method was used to predict the optimal conditions for glycerol production. Under static conditions, the highest level of glycerol production was observed at 20 degrees C, while incubation at 25 degrees C gave the best results when the cultures were agitated for 24 h. Response surface equations were used to predict that the optimum conditions for glycerol production by S. cerevisiae Y11 were a temperature of 22 degrees C, an initial sulfite concentration of 300 ppm, and no agitation, which yielded 0.68 g of glycerol per 100 ml.  相似文献   

20.
Non-wine yeasts could enhance the aroma and organoleptic profile of wines. However, compared to wine strains, they have specific intolerances to winemaking conditions. To solve this problem, we generated intra- and interspecific hybrids using a non-GMO technique (rare-mating) in which non-wine strains of S. uvarum, S. kudriavzevii and S. cerevisiae species were crossed with a wine S. cerevisiae yeast. The hybrid that inherited the wine yeast mitochondrial showed better fermentation capacities, whereas hybrids carrying the non-wine strain mitotype reduced ethanol levels and increased glycerol, 2,3-butanediol and organic acid production. Moreover, all the hybrids produced several fruity and floral aromas compared to the wine yeast: β-phenylethyl acetate, isobutyl acetate, γ-octalactone, ethyl cinnamate in both varietal wines. Sc × Sk crosses produced three- to sixfold higher polyfunctional mercaptans, 4-mercapto-4-methylpentan-2-one (4MMP) and 3-mercaptohexanol (3MH). We proposed that the exceptional 3MH release observed in an S. cerevisiae × S. kudriavzevii hybrid was due to the cleavage of the non-volatile glutathione precursor (Glt-3MH) to detoxify the cell from the presence of methylglyoxal, a compound related to the high glycerol yield reached by this hybrid. In conclusion, hybrid generation allows us to obtain aromatically improved yeasts concerning their wine parent. In addition, they reduced ethanol and increased organic acids yields, which counteracts climate change effect on grapes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号