首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhao G  Bruckner RC  Jorns MS 《Biochemistry》2008,47(35):9124-9135
Monomeric sarcosine oxidase (MSOX) catalyzes the oxidation of N-methylglycine and contains covalently bound FAD that is hydrogen bonded at position N(5) to Lys265 via a bridging water. Lys265 is absent in the homologous but oxygen-unreactive FAD site in heterotetrameric sarcosine oxidase. Isolated preparations of Lys265 mutants contain little or no flavin but can be covalently reconstituted with FAD. Mutation of Lys265 to a neutral residue (Ala, Gln, Met) causes a 6000- to 9000-fold decrease in apparent turnover rate whereas a 170-fold decrease is found with Lys265Arg. Substitution of Lys265 with Met or Arg causes only a modest decrease in the rate of sarcosine oxidation (9.0- or 3.8-fold, respectively), as judged by reductive half-reaction studies which show that the reactions proceed via an initial enzyme.sarcosine charge transfer complex and a novel spectral intermediate not detected with wild-type MSOX. Oxidation of reduced wild-type MSOX (k = 2.83 x 10(5) M(-1) s(-1)) is more than 1000-fold faster than observed for the reaction of oxygen with free reduced flavin. Mutation of Lys265 to a neutral residue causes a dramatic 8000-fold decrease in oxygen reactivity whereas a 250-fold decrease is observed with Lys265Arg. The results provide definitive evidence for Lys265 as the site of oxygen activation and show that a single positively charged amino acid residue is entirely responsible for the rate acceleration observed with wild-type enzyme. Significantly, the active sites for sarcosine oxidation and oxygen reduction are located on opposite faces of the flavin ring.  相似文献   

2.
Wagner MA  Khanna P  Jorns MS 《Biochemistry》1999,38(17):5588-5595
Monomeric sarcosine oxidase (MSOX) and N-methyltryptophan oxidase (MTOX) are homologous enzymes that catalyze the oxidative demethylation of sarcosine (N-methylglycine) and N-methyl-L-tryptophan, respectively. MSOX is induced in various bacteria upon growth on sarcosine. MTOX is an E. coli enzyme of unknown metabolic function. Both enzymes contain covalently bound flavin. The covalent flavin is at the FAD level as judged by electrospray mass spectrometry. The data provide the first evidence that MTOX is a flavoprotein. The following observations indicate that 8alpha-(S-cysteinyl)FAD is the covalent flavin in MSOX from Bacillus sp. B-0618 and MTOX. FMN-containing peptides, prepared by digestion of MSOX or MTOX with trypsin, chymotrypsin, and phosphodiesterase, exhibited absorption and fluorescence properties characteristic of an 8alpha-(S-cysteinyl)flavin and could be bound to apo-flavodoxin. The thioether link in the FMN-containing peptides was converted to the sulfone by performic acid oxidation, as judged by characteristic absorbance changes and an increase in flavin fluorescence. The sulfone underwent a predicted reductive cleavage reaction upon treatment with dithionite, releasing unmodified FMN. Cys315 was identified as the covalent FAD attachment site in MSOX from B. sp. B-0618, as judged by the sequence obtained for a flavin-containing tryptic peptide (GAVCMYT). Cys315 aligns with a conserved cysteine in MSOX from other bacteria, MTOX (Cys308) and pipecolate oxidase, a homologous mammalian enzyme known to contain covalently bound flavin. There is only one conserved cysteine found among these enzymes, suggesting that Cys308 is the covalent flavin attachment site in MTOX.  相似文献   

3.
FAD in monomeric sarcosine oxidase (MSOX) is covalently linked to the protein by a thioether linkage between its 8alpha-methyl group and Cys315. Covalent flavinylation of apoMSOX has been shown to proceed via an autocatalytic reaction that requires only FAD and is blocked by a mutation of Cys315. His45 and Arg49 are located just above the si-face of the flavin ring, near the site of covalent attachment. His45Ala and His45Asn mutants contain covalently bound FAD and exhibit catalytic properties similar to wild-type MSOX. The results rule out a significant role for His45 in covalent flavinylation or sarcosine oxidation. In contrast, Arg49Ala and Arg49Gln mutants are isolated as catalytically inactive apoproteins. ApoArg49Ala forms a stable noncovalent complex with reduced 5-deazaFAD that exhibits properties similar to those observed for the corresponding complex with apoCys315Ala. The results show that elimination of a basic residue at position 49 blocks covalent flavinylation but does not prevent noncovalent flavin binding. The Arg49Lys mutant contains covalently bound FAD, but its flavin content is approximately 4-fold lower than wild-type MSOX. However, most of the apoprotein in the Arg49Lys preparation is reconstitutable with FAD in a reaction that exhibits kinetic parameters similar to those observed for flavinylation of wild-type apoMSOX. Although covalent flavinylation is scarcely affected, the specific activity of the Arg49Lys mutant is only 4% of that observed with wild-type MSOX. The results show that a basic residue at position 49 is essential for covalent flavinylation of MSOX and suggest that Arg49 also plays an important role in sarcosine oxidation.  相似文献   

4.
Monomeric sarcosine oxidase (MSOX) contains covalently bound FAD and catalyzes the oxidative demethylation of sarcosine ( N-methylglycine). The side chain of Arg49 is in van der Waals contact with the si face of the flavin ring; sarcosine binds just above the re face. Covalent flavin attachment requires a basic residue (Arg or Lys) at position 49. Although flavinylation is scarcely affected, mutation of Arg49 to Lys causes a 40-fold decrease in k cat and a 150-fold decrease in k cat/ K m sarcosine. The overall structure of the Arg49Lys mutant is very similar to wild-type MSOX; the side chain of Lys49 in the mutant is nearly congruent to that of Arg49 in the wild-type enzyme. The Arg49Lys mutant exhibits several features consistent with a less electropositive active site: (1) Charge transfer bands observed for mutant enzyme complexes with competitive inhibitors absorb at higher energy than the corresponding wild-type complexes. (2) The p K a for ionization at N(3)H of FAD is more than two pH units higher in the mutant than in wild-type MSOX. (3) The reduction potential of the oxidized/radical couple in the mutant is 100 mV lower than in the wild-type enzyme. The lower reduction potential is likely to be a major cause of the reduced catalytic activity of the mutant. Electrostatic interactions with Arg49 play an important role in catalysis and covalent flavinylation. A context-sensitive model for the electrostatic impact of an arginine to lysine mutation can account for the dramatically different consequences of the Arg49Lys mutation on MSOX catalysis and holoenzyme biosysnthesis.  相似文献   

5.
Chen ZW  Zhao G  Martinovic S  Jorns MS  Mathews FS 《Biochemistry》2005,44(47):15444-15450
Monomeric sarcosine oxidase (MSOX) is a flavoprotein that contains covalently bound FAD [8a-(S-cysteinyl)FAD] and catalyzes the oxidation of sarcosine (N-methylglycine) and other secondary amino acids, such as l-proline. Our previous studies showed that N-(cyclopropyl)glycine (CPG) acts as a mechanism-based inactivator of MSOX [Zhao, G., et al. (2000) Biochemistry 39, 14341-14347]. The reaction results in the formation of a modified reduced flavin that can be further reduced and stabilized by treatment with sodium borohydride. The borohydride-reduced CPG-modified enzyme exhibits a mass increase of 63 +/- 2 Da as compared with native MSOX. The crystal structure of the modified enzyme, solved at 1.85 A resolution, shows that FAD is the only site of modification. The modified FAD contains a fused five-membered ring, linking the C(4a) and N(5) atoms of the flavin ring, with an additional oxygen atom bound to the carbon atom attached to N(5) and a tetrahedral carbon atom at flavin C(4) with a hydroxyl group attached to C(4). On the basis of the crystal structure of the borohydride-stabilized adduct, we conclude that the labile CPG-modified flavin is a 4a,5-dihydroflavin derivative with a substituent derived from the cleavage of the cyclopropyl ring in CPG. The results are consistent with CPG-mediated inactivation in a reaction initiated by single electron transfer from the amine function in CPG to FAD in MSOX, followed by collapse of the radical pair to yield a covalently modified 4a,5-dihydroflavin.  相似文献   

6.
Zhao G  Qu J  Davis FA  Jorns MS 《Biochemistry》2000,39(46):14341-14347
Monomeric sarcosine oxidase (MSOX) catalyzes the oxidative demethylation of sarcosine (N-methylglycine) and contains covalently bound flavin adenine dinucleotide (FAD). The present study demonstrates that N-(cyclopropyl)glycine (CPG) is a mechanism-based inhibitor. CPG forms a charge transfer complex with MSOX that reacts under aerobic conditions to yield a covalently modified, reduced flavin (lambda(max) = 422 nm, epsilon(422) = 3.9 mM(-1) cm(-1)), accompanied by a loss of enzyme activity. The CPG-modified flavin is converted at an 8-fold slower rate to 1,5-dihydro-FAD (EFADH(2)), which reacts rapidly with oxygen to regenerate unmodified, oxidized enzyme. As a result, CPG-modified MSOX reaches a CPG-dependent steady-state concentration under aerobic conditions and reverts back to unmodified enzyme upon removal of excess reagent. No loss of activity is observed under anaerobic conditions where EFADH(2) is formed in a reaction that goes to completion at low CPG concentrations. Aerobic denaturation of CPG-modified enzyme yields unmodified, oxidized flavin at a rate similar to the anaerobic denaturation reaction, which yields 1,5-dihydro-FAD. The CPG-modified flavin can be reduced with borohydride, a reaction that blocks conversion to unmodified flavin upon removal of excess CPG or enzyme denaturation. The possible chemical mechanism of inactivation and structure of the CPG-modified flavin are discussed.  相似文献   

7.
Monomeric sarcosine oxidase (MSOX) is a prototypical member of a recently recognized family of amine-oxidizing enzymes that all contain covalently bound flavin. Mutation of the covalent flavin attachment site in MSOX produces a catalytically inactive apoprotein (apoCys315Ala) that forms an unstable complex with FAD (K(d) = 100 muM), similar to that observed with wild-type apoMSOX where the complex is formed as an intermediate during covalent flavin attachment. In situ reconstitution of sarcosine oxidase activity is achieved by assaying apoCys315Ala in the presence of FAD or 8-nor-8-chloroFAD, an analogue with an approximately 55 mV higher reduction potential. After correction for an estimated 65% reconstitutable apoprotein, the specific activity of apoCys315Ala in the presence of excess FAD or 8-nor-8-chloroFAD is 14% or 80%, respectively, of that observed with wild-type MSOX. Unlike oxidized flavin, apoCys315Ala exhibits a high affinity for reduced flavin, as judged by results obtained with reduced 5-deazaFAD (5-deazaFADH(2)) where the estimated binding stoichiometry is unaffected by dialysis. The Cys315Ala.5-deazaFADH(2) complex is also air-stable but is readily oxidized by sarcosine imine, a reaction accompanied by release of weakly bound oxidized 5-deazaFAD. The dramatic difference in the binding affinity of apoCys315Ala for oxidized and reduced flavin indicates that the protein environment must induce a sizable increase in the reduction potential of noncovalently bound flavin (DeltaE(m) approximately 120 mV). The covalent flavin linkage prevents loss of weakly bound oxidized FAD and also modulates the flavin reduction potential in conjunction with the protein environment.  相似文献   

8.
Monomeric sarcosine oxidase (MSOX) is an inducible bacterial flavoenzyme that catalyzes the oxidative demethylation of sarcosine (N-methylglycine) and contains covalently bound FAD [8alpha-(S-cysteinyl)FAD]. This paper describes the spectroscopic and thermodynamic properties of MSOX as well as the X-ray crystallographic characterization of three new enzyme.inhibitor complexes. MSOX stabilizes the anionic form of the oxidized flavin (pK(a) = 8.3 versus 10.4 with free FAD), forms a thermodynamically stable flavin radical, and stabilizes the anionic form of the radical (pK(a) < 6 versus pK(a) = 8.3 with free FAD). MSOX forms a covalent flavin.sulfite complex, but there appears to be a significant kinetic barrier against complex formation. Active site binding determinants were probed in thermodynamic studies with various substrate analogues whose binding was found to perturb the flavin absorption spectrum and inhibit MSOX activity. The carboxyl group of sarcosine is essential for binding since none is observed with simple amines. The amino group of sarcosine is not essential, but binding affinity depends on the nature of the substitution (CH(3)XCH(2)CO(2)(-), X = CH(2) < O < S < Se < Te), an effect which has been attributed to differences in the strength of donor-pi interactions. MSOX probably binds the zwitterionic form of sarcosine, as judged by the spectrally similar complexes formed with dimethylthioacetate [(CH(3))(2)S(+)CH(2)CO(2)(-)] and dimethylglycine (K(d) = 20.5 and 17.4 mM, respectively) and by the crystal structure of the latter. The methyl group of sarcosine is not essential but does contribute to binding affinity. The methyl group contribution varied from -3.79 to -0.65 kcal/mol with CH(3)XCH(2)CO(2)(-) depending on the nature of the heteroatom (NH(2)(+) > O > S) and appeared to be inversely correlated with heteroatom electron density. Charge-transfer complexes are formed with MSOX and CH(3)XCH(2)CO(2)(-) when X = S, Se, or Te. An excellent linear correlation is observed between the energy of the charge transfer bands and the one-electron reduction potentials of the ligands. The presence of a sulfur, selenium, or telurium atom identically positioned with respect to the flavin ring is confirmed by X-ray crystallography, although the increased atomic radius of S < Se < Te appears to simultaneously favor an alternate binding position for the heavier atoms. Although L-proline is a poor substrate, aromatic heterocyclic carboxylates containing a five-membered ring and various heteroatoms (X = NH, O, S) are good ligands (K(d, X=NH) = 1.37 mM) and form charge-transfer complexes with MSOX. The energy of the charge-transfer bands (S > O > NH) is linearly correlated with the one-electron ionization potentials of the corresponding heterocyclic rings.  相似文献   

9.
A single basic residue above the si-face of the flavin ring is the site of oxygen activation in glucose oxidase (GOX) (His516) and monomeric sarcosine oxidase (MSOX) (Lys265). Crystal structures of both flavoenzymes exhibit a small pocket at the oxygen activation site that might provide a preorganized binding site for superoxide anion, an obligatory intermediate in the two-electron reduction of oxygen. Chloride binds at these polar oxygen activation sites, as judged by solution and structural studies. First, chloride forms spectrally detectable complexes with GOX and MSOX. The protonated form of His516 is required for tight binding of chloride to oxidized GOX and for rapid reaction of reduced GOX with oxygen. Formation of a binary MSOX·chloride complex requires Lys265 and is not observed with Lys265Met. Binding of chloride to MSOX does not affect the binding of a sarcosine analogue (MTA, methylthioactetate) above the re-face of the flavin ring. Definitive evidence is provided by crystal structures determined for a binary MSOX·chloride complex and a ternary MSOX·chloride·MTA complex. Chloride binds in the small pocket at a position otherwise occupied by a water molecule and forms hydrogen bonds to four ligands that are arranged in approximate tetrahedral geometry: Lys265:NZ, Arg49:NH1, and two water molecules, one of which is hydrogen bonded to FAD:N5. The results show that chloride (i) acts as an oxygen surrogate, (ii) is an effective probe of polar oxygen activation sites, and (iii) provides a valuable complementary tool to the xenon gas method that is used to map nonpolar oxygen-binding cavities.  相似文献   

10.
The X-ray structure of monomeric N-methyltryptophan oxidase from Escherichia coli (MTOX) has been solved at 3.2 A resolution by molecular replacement methods using Bacillus sp. sarcosine oxidase structure (MSOX, 43% sequence identity) as search model. The analysis of the substrate binding site highlights the structural determinants that favour the accommodation of the bulky N-methyltryptophan residue in MTOX. In fact, although the nature and geometry of the catalytic residues within the first contact shell of the FAD moiety appear to be virtually superposable in MTOX and MSOX, the presence of a Thr residue in position 239 in MTOX (Met245 in MSOX) located at the entrance of the active site appears to play a key role for the recognition of the amino acid substrate side chain. Accordingly, a 15 fold increase in k(cat) and 100 fold decrease in K(m) for sarcosine as substrate has been achieved in MTOX upon T239M mutation, with a concomitant three-fold decrease in activity towards N-methyltryptophan. These data provide clear evidence for the presence of a catalytic core, common to the members of the methylaminoacid oxidase subfamily, and of a side chain recognition pocket, located at the entrance of the active site, that can be adjusted to host diverse aminoacids in the different enzyme species. The site involved in the covalent attachment of flavin has also been addressed by screening degenerate mutants in the relevant positions around Cys308-FAD linkage. Lys341 appears to be the key residue involved in flavin incorporation and covalent linkage.  相似文献   

11.
Khanna P  Jorns MS 《Biochemistry》2003,42(4):864-869
Monomeric sarcosine oxidase (MSOX) and N-methyltryptophan oxidase (MTOX) are homologous bacterial flavoenzymes that contain covalently bound flavin [8alpha-(S-cysteinyl)FAD]. Reaction of MSOX or MTOX with a small excess of sodium borohydride results in immediate flavin reduction to a species that exhibits spectral properties (lambda(max) = 405 nm with a second broad peak at 332 nm) similar to those of 3,4-dihydroflavin. The borohydride-reduced enzymes retain full catalytic activity. Substrate reduction converts the 405 nm species to an air-sensitive tetrahydroflavin that reacts with oxygen to yield unmodified oxidized enzyme. Unexpectedly, the putative 3,4-dihydroflavin bound to MSOX or MTOX is unstable in the absence of substrate. An isosbestic conversion of the 405 nm species to yield unmodified, oxidized flavin is observed when the reaction is conducted under aerobic conditions (k(obs) = 4.9 x 10(-2) min(-1)). Under anaerobic conditions, an oxygen-sensitive species resembling 1,5-dihydroflavin is formed in an isosbestic reaction that occurs at a rate similar to that of the aerobic reaction (k(obs) = 5.3 x 10(-2) min(-1)). Possible reaction of the 3,4-dihydroflavin with a second molecule of borohydride to yield an air-sensitive tetrahydroflavin is unlikely since prior scavenging of residual borohydride with excess formaldehyde had no effect on the aerobic conversion to unmodified oxidized flavin. The observed instability is attributed to a tautomeric rearrangement of the 3,4-dihydroflavin to generate 1,5-dihydroflavin, a species that is also air-sensitive. Evidence in favor of an active site facilitated tautomerization reaction is provided by the fact that the stability of the 405 nm species formed with MSOX is enhanced 200-fold upon denaturation with urea or heat. The observed tautomeric rearrangement of 3,4-dihydroflavin may provide insight regarding a related flavin tautomerization reaction that has been proposed as a key step in the biosynthesis of covalent flavin linkages.  相似文献   

12.
The covalently bound FAD in native monomeric sarcosine oxidase (MSOX) is attached to the protein by a thioether bond between the 8alpha-methyl group of the flavin and Cys315. Large amounts of soluble apoenzyme are produced by controlled expression in a riboflavin-dependent Escherichia coli strain. A time-dependent increase in catalytic activity is observed upon incubation of apoMSOX with FAD, accompanied by the covalent incorporation of FAD to approximately 80% of the level observed with the native enzyme. The spectral and catalytic properties of the reconstituted enzyme are otherwise indistinguishable from those of native MSOX. The reconstitution reaction exhibits apparent second-order kinetics (k = 139 M(-)(1) min(-)(1) at 23 degrees C) and is accompanied by the formation of a stoichiometric amount of hydrogen peroxide. A time-dependent reduction of FAD is observed when the reconstitution reaction is conducted under anaerobic conditions. The results provide definitive evidence for autoflavinylation in a reaction that proceeds via a reduced flavin intermediate and requires only apoMSOX and FAD. Flavinylation of apoMSOX is not observed with 5-deazaFAD or 1-deazaFAD, an outcome attributed to a decrease in the acidity of the 8alpha-methyl group protons. Covalent flavin attachment is observed with 8-nor-8-chloroFAD in an aromatic nucleophilic displacement reaction that proceeds via a quininoid intermediate but not a reduced flavin intermediate. The reconstituted enzyme contains a modified cysteine-flavin linkage (8-nor-8-S-cysteinyl) as compared with native MSOX (8alpha-S-cysteinyl), a difference that may account for its approximately 10-fold lower catalytic activity.  相似文献   

13.
Venci D  Zhao G  Jorns MS 《Biochemistry》2002,41(52):15795-15802
Nikkomycin antibiotics are potent inhibitors of chitin synthase, effective as therapeutic antifungal agents in humans and easily degradable insecticides in agriculture. NikD is a novel flavoprotein that catalyzes the oxidation of Delta(1)- or Delta(2)-piperideine-2-carboxylate, a key step in the biosynthesis of nikkomycin antibiotics. The resulting dihydropicolinate product may be further oxidized by nikD or converted to picolinate in a nonenzymic reaction. Saturated nitrogen heterocycles (L-pipecolate, L-proline) and 3,4-dehydro-L-proline act as alternate substrates. The ability of nikD to oxidize 3,4-dehydro-L-proline, but not 1-cyclohexenoate, suggests that the enzyme is specific for the oxidation of a carbon-nitrogen bond. An equivalent reaction is possible with the enamine (Delta(2)), but not the imine (Delta(1)), form of the natural piperideine-2-carboxylate substrate. Apparent steady-state kinetic parameters for the reaction of nikD with Delta(1)- or Delta(2)-piperideine-2-carboxylate (k(cat) = 64 min(-1); K(m) = 5.2 microM) or 3,4-dehydro-L-proline (k(cat) = 18 min(-1); K(m) = 13 mM) were determined in air-saturated buffer by measuring hydrogen peroxide formation in a coupled assay. NikD appears to be a new member of the monomeric sarcosine oxidase (MSOX) family of amine oxidizing enzymes. The enzyme contains 1 mol of flavin adenine dinucleotide (FAD) covalently linked to Cys321. The covalent flavin attachment site and two residues that bind substrate carboxylate in MSOX are conserved in nikD. NikD, however, exhibits an unusual long-wavelength absorption band, attributed to charge-transfer interaction between FAD and an ionizable (pK(a) = 7.3) active-site residue. Similar long-wavelength absorption bands have been observed for flavoproteins containing an active site cysteine or cysteine sulfenic acid. Interestingly, Cys273 in nikD aligns with an active-site histidine in MSOX (His269) that is, otherwise, a highly conserved residue within the MSOX family.  相似文献   

14.
Zhao G  Jorns MS 《Biochemistry》2002,41(31):9747-9750
Monomeric sarcosine oxidase (MSOX) contains covalently bound FAD and catalyzes the oxidation of sarcosine (N-methylglycine) and other secondary amino acids, including L-proline. The reductive half-reaction with L-proline proceeds via a rapidly attained equilibrium (K(d)) between free E(ox) and the E(ox).S complex, followed by a practically irreversible reduction step (E(ox).S --> E(red).P) associated with a rate constant, k(lim). The effect of pH on the reductive half-reaction shows that the K(d) for L-proline binding is pH-independent (pH 6.46-9.0). This indicates that MSOX binds the zwitterionic form of L-proline, the predominant species in solution at neutral pH (pK(a) = 10.6). Values for the limiting rate of reduction (k(lim)) are, however, strongly pH-dependent and indicate that an ionizable group in the E(ox).L-proline complex (pK(a) = 8.02) must be unprotonated for conversion to E(red).P. Charge-transfer interaction with L-proline as the donor and FAD as acceptor is possible only with the anionic form of L-proline. The ionizable group in the E(ox).L-proline complex is required for conversion of enzyme-bound L-proline from the zwitterionic to the reactive anionic form, as judged by the independently determined pK(a) for charge-transfer complex formation with the MSOX flavin (pK(a) = 7.94). The observation that the anionic form of L-proline with a neutral amino group is the reactive species in the reduction of MSOX is similar to that observed for other flavoenzymes that oxidize amines, including monoamine oxidase and trimethylamine dehydrogenase.  相似文献   

15.
M S Jorns 《Biochemistry》1985,24(13):3189-3194
Sarcosine oxidase from Corynebacterium sp. U-96 contains 1 mol of noncovalently bound flavin and 1 mol of covalently bound flavin per mole of enzyme. Anaerobic titrations of the enzyme with either sarcosine or dithionite show that both flavins are reducible and that two electrons per flavin are required for complete reduction. Absorption increases in the 510-650-nm region, attributed to the formation of a blue neutral flavin radical, are observed during titration of the enzyme with dithionite or substrate, during photochemical reduction of the enzyme, and during reoxidation of substrate-reduced enzyme. Fifty percent of the enzyme flavin forms a reversible, covalent complex with sulfite (Kd = 1.1 X 10(-4) M), accompanied by a complete loss of catalytic activity. Sulfite does not prevent reduction of the sulfite-unreactive flavin by sarcosine but does interfere with the reoxidation of reduced enzyme by oxygen. The stability of the sulfite complex is unaffected by excess acetate (an inhibitor competitive with sarcosine) or by removal of the noncovalent flavin to form a semiapoprotein preparation where 75% of the flavin reacts with sulfite (Kd = 9.4 X 10(-5) M) while only 3% remains reducible with sarcosine. The results indicate that oxygen and sulfite react with the covalently bound flavin and suggest that sarcosine is oxidized by the noncovalently bound flavin.  相似文献   

16.
Zhao G  Song H  Chen ZW  Mathews FS  Jorns MS 《Biochemistry》2002,41(31):9751-9764
Conservative mutation of His269 (to Asn, Ala, or Gln) does not-significantly affect the expression of monomeric sarcosine oxidase (MSOX), covalent flavinylation, the physicochemical properties of bound FAD, or the overall protein structure. Turnover with sarcosine and the limiting rate of the reductive half-reaction with L-proline at pH 8.0 are, however, nearly 2 orders of magnitude slower than that with with wild-type MSOX. The crystal structure of the His269Asn complex with pyrrole-2-carboxylate shows that the pyrrole ring of the inhibitor is displaced as compared with wild-type MSOX. The His269 mutants all form charge-transfer complexes with pyrrole-2-carboxylate or methylthioacetate, but the charge-transfer bands are shifted to shorter wavelengths (higher energy) as compared with wild-type MSOX. Both wild-type MSOX and the His269Asn mutant bind the zwitterionic form of L-proline. The E(ox).L-proline complex formed with the His269Asn mutant or wild-type MSOX contains an ionizable group (pK(a) = 8.0) that is required for conversion of the zwitterionic L-proline to the reactive anionic form, indicating that His269 is not the active-site base. We propose that the change in ligand orientation observed upon mutation of His269 results in a less than optimal overlap of the highest occupied orbital of the ligand with the lowest unoccupied orbital of the flavin. The postulated effect on orbital overlap may account for the increased energy of charge-transfer bands and the slower rates of electron transfer observed for mutant enzyme complexes with charge-transfer ligands and substrates, respectively.  相似文献   

17.
K Kvalnes-Krick  M S Jorns 《Biochemistry》1986,25(20):6061-6069
Sarcosine oxidase was purified to homogeneity from Corynebacterium sp. P-1, a soil organism isolated by a serial enrichment technique. The enzyme contains 1 mol of noncovalently bound flavin [flavin adenine dinucleotide (FAD)] plus 1 mol of covalently bound flavin [8 alpha-(N3-histidyl)-FAD] per mole of enzyme (Mr 168,000). The two flavins appear to have different roles in catalysis. The enzyme has an unusual subunit composition, containing four dissimilar subunits (Mr 100,000, 42,000, 20,000, and 6000). The same subunits are detected in Western blot analysis of cell extracts prepared in the presence of trichloroacetic acid, indicating that the subunits are a genuine property of the enzyme as it exists in vivo. The presence of both covalent and noncovalent flavin in a single enzyme is extremely unusual and has previously been observed only with a sarcosine oxidase from a soil Corynebacterium isolated in Japan. The enzymes exhibit many similarities but are distinguishable in electrophoretic studies. Immunologically, the enzymes are cross-reactive but not identical. The results indicate that the synthesis of a sarcosine oxidase containing both covalent and noncovalent flavin is not a particularly unusual event in corynebacteria.  相似文献   

18.
The flavoenzymes dimethylglycine dehydrogenase (EC 1.5.99.2) and sarcosine dehydrogenase (EC 1.5.99.1) contain covalently bound FAD linked via the 8 alpha-position of the isoalloxazine ring to the imidazole N(3) of a histidine residue (Cook, R. J., Misono, K. S., and Wagner, C. (1984) J. Biol. Chem. 259, 12475-12480). The flavin-peptides from tryptic digests of these two enzymes have been isolated and sequenced. Automated sequence analysis showed that the flavin-peptide from dimethylglycine dehydrogenase contained 25 amino acid residues in the following sequence: Ser-Glu-Leu-Thr-Ala-Gly-Ser- Thr-Trp-His(flavin)-Ala-Ala-Gly-Leu-Thr-Thr-Tyr-Phe-His-Pro-Gly-Ile-A sn-Leu-Lys. The sequence determined for the flavin-peptide from sarcosine dehydrogenase contained 14 amino acid residues Leu-Thr-Ser-Gly-Thr-Thr-Trp-His(flavin)-Thr-Ala-Gly-Leu-Gly-Arg.  相似文献   

19.
A sarcosine oxidase (sarcosine: oxygen oxidoreductase (demethylating), EC 1.5.3.1) isolated from Corynebacterium sp. U-96 contains both covalently bound FAD and noncovalently bound FAD. The noncovalent FAD reacts with sarcosine, the covalent FAD with molecular oxygen (Jorns, M.S. (1985) Biochemistry 24, 3189-3194). To clarify the reaction mechanism of the enzyme, kinetic investigations were performed by the stopped-flow method as well as by analysis of the overall reaction. The absorption spectrum of the enzyme in the steady state was very similar to that of the oxidized enzyme, and no intermediate enzyme species, such as a semiquinoid flavin, was detected. The rate for anaerobic reduction of the noncovalently bound FAD and the covalently bound FAD by sarcosine were 31 and 6.7 s-1, respectively. The latter value was smaller than the value of respective Vmax/e0 obtained by the overall reaction kinetics (Vmax/e0: the maximum velocity per enzyme concentration). Both rate constants for oxidation of the two FADs by molecular oxygen were 100 s-1. A reaction scheme of sarcosine oxidase is proposed to account for the data obtained; 70% of the enzyme functions via a fully reduced enzyme, and 30% of the enzyme goes along a side-path, without forming the fully reduced enzyme. In addition, it is suggested that the reactivity of noncovalently bound FAD with sarcosine is affected by the oxidation-reduction state of the covalently bound FAD, in contrast to the reactivity of the covalently bound FAD with molecular oxygen, which is independent of the oxidation-reduction state of the noncovalently bound FAD.  相似文献   

20.
Using difference spectrophotometry, measurements of succinate dehydrogenase activity, and SDS-polyacrylamide gels, the biochemical properties of hepatic mitochondria from riboflavin-deficient rats were monitored during recovery on riboflavin. [14C]Riboflavin was incorporated into four mitochondrial flavoproteins having covalently bound flavin coenzyme. Alterations in cytochromes, especially cytochrome oxidase, and the biosyntheses of succinate dehydrogenase, monoamine oxidase, sarcosine dehydrogenase, and an unknown flavoprotein were observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号