首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method is presented for characterizing primary cement interfaces of barnacles using in situ attenuated total reflection–Fourier transform infrared spectroscopy. Primary cement of the barnacle, Balanus amphitrite (Amphibalanus amphitrite), was characterized without any disruption to the original cement interface, after settling and growing barnacles directly on double sided polished germanium wafers. High-quality IR spectra were acquired of live barnacle cement interfaces, providing a spectroscopic fingerprint of cured primary cement in vivo with the barnacle adhered to the substratum. Additional spectra were also acquired of intact cement interfaces for which the upper portion of the barnacle had been removed leaving only the base plate and cement layer attached to the substratum. This allowed further characterization of primary cement interfaces that were dried or placed in D2O. The resulting spectra were consistent with the cement being proteinaceous, and allowed analysis of the protein secondary structure and water content in the cement layer. The estimated secondary structure composition was primarily β-sheet, with additional α-helix, turn and unordered components. The cement of live barnacles, freshly removed from seawater, was estimated to have a water content of 20–50% by weight. These results provide new insights into the chemical properties of the undisturbed barnacle adhesive interface.  相似文献   

2.
海洋固着动物分泌的粘胶蛋白在潮湿环境下可以抵御水的阻力而发挥粘性,成为当今生物医学和仿生学领域开发高性能材料的关键候选材料。藤壶作为海洋污损生物之一,通过分泌的藤壶胶可以在水下牢固地附着在不同表面特性的基底材料上。目前,对藤壶的粘附过程已经有了较为深入的了解,但其水下粘附机制尚未特别清晰,还需进一步阐明。为此,本文对藤壶胶及其粘附过程的研究进展进行了综述,介绍了藤壶胶主要粘胶蛋白的研究进展、总结了藤壶胶蛋白的获取方式及其应用,最后提出了可能的研究要点和未来发展方向。  相似文献   

3.
Sangeetha Raman 《Biofouling》2013,29(6):569-577
The barnacle exhibits a high degree of control over its attachment onto different types of solid surface. The structure and composition of barnacle cement have been reported previously, but mostly for barnacles growing on low surface energy materials. This article focuses on the strategies used by barnacles when they attach to engineering materials such as polymethylmethacrylate (PMMA), titanium (Ti) and stainless steel 316L (SS316L). Adhesion to these substrata is compared in terms of morphological structure, thickness and functional groups of the primary cement, the molting cycle and the nanomechanical properties of the cement. Structural characterization studies using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) in conjunction with nanomechanical characterization and infrared spectroscopy (FTIR) are used to understand the differences in the adhesion of primary barnacle cement to the different substrata. The results provide new insights into understanding the mechanisms at work across the barnacle–substratum interface.  相似文献   

4.
Sun Y  Guo S  Walker GC  Kavanagh CJ  Swain GW 《Biofouling》2004,20(6):279-289
The properties of barnacle adhesive on silicone surfaces were studied by AFM indentation, imaging, and other tests and compared to the barnacle shear adhesion strength. A multilayered structure of barnacle adhesive plaque is proposed based on layered modulus regions measured by AFM indentation. The fracture of barnacles from PDMS surfaces was found to include both interfacial and cohesive failure of barnacle adhesive plaque, as determined by protein staining of the substratum after forced barnacle release from the substrate. Data for freshly released barnacles showed that there was a strong correlation between the mean Young's modulus of the outermost (softest) adhesive layer (E<0.3 MPa) and the shear strength of adhesion, but no correlation for other higher modulus regions. Linear, quadratic, and Griffith's failure criterion (based on rough estimate of crack length) regressions were used in the fit, and showed significance.  相似文献   

5.
The properties of barnacle adhesive on silicone surfaces were studied by AFM indentation, imaging, and other tests and compared to the barnacle shear adhesion strength. A multilayered structure of barnacle adhesive plaque is proposed based on layered modulus regions measured by AFM indentation. The fracture of barnacles from PDMS surfaces was found to include both interfacial and cohesive failure of barnacle adhesive plaque, as determined by protein staining of the substratum after forced barnacle release from the substrate. Data for freshly released barnacles showed that there was a strong correlation between the mean Young's modulus of the outermost (softest) adhesive layer (E< 0.3 MPa) and the shear strength of adhesion, but no correlation for other higher modulus regions. Linear, quadratic, and Griffith's failure criterion (based on rough estimate of crack length) regressions were used in the fit, and showed significance.  相似文献   

6.
Raman S  Kumar R 《Biofouling》2011,27(6):569-577
The barnacle exhibits a high degree of control over its attachment onto different types of solid surface. The structure and composition of barnacle cement have been reported previously, but mostly for barnacles growing on low surface energy materials. This article focuses on the strategies used by barnacles when they attach to engineering materials such as polymethylmethacrylate (PMMA), titanium (Ti) and stainless steel 316L (SS316L). Adhesion to these substrata is compared in terms of morphological structure, thickness and functional groups of the primary cement, the molting cycle and the nanomechanical properties of the cement. Structural characterization studies using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) in conjunction with nanomechanical characterization and infrared spectroscopy (FTIR) are used to understand the differences in the adhesion of primary barnacle cement to the different substrata. The results provide new insights into understanding the mechanisms at work across the barnacle-substratum interface.  相似文献   

7.
Calcite-specific coupling protein in barnacle underwater cement   总被引:1,自引:0,他引:1  
The barnacle relies for its attachment to underwater foreign substrata on the formation of a multiprotein complex called cement. The 20 kDa cement protein is a component of Megabalanus rosa cement, although its specific function in underwater attachment has not, until now, been known. The recombinant form of the protein expressed in bacteria was purified in soluble form under physiological conditions, and confirmed to retain almost the same structure as that of the native protein. Both the protein from the adhesive layer of the barnacle and the recombinant protein were characterized. This revealed that abundant Cys residues, which accounted for 17% of the total residues, were in the intramolecular disulfide form, and were essential for the proper folding of the monomeric protein structure. The recombinant protein was adsorbed to calcite and metal oxides in seawater, but not to glass and synthetic polymers. The adsorption isotherm for adsorption to calcite fitted the Langmuir model well, indicating that the protein is a calcite-specific adsorbent. An evaluation of the distribution of the molecular size in solution by analytical ultracentrifugation indicated that the recombinant protein exists as a monomer in 100 mm to 1 m NaCl solution; thus, the protein acts as a monomer when interacting with the calcite surface. cDNA encoding a homologous protein was isolated from Balanus albicostatus, and its derived amino acid sequence was compared with that from M. rosa. Calcite is the major constituent in both the shell of barnacle base and the periphery, which is also a possible target for the cement, due to the gregarious nature of the organisms. The specificity of the protein for calcite may be related to the fact that calcite is the most frequent material attached by the cement.  相似文献   

8.
9.
Thiyagarajan V  Qian PY 《Proteomics》2008,8(15):3164-3172
The barnacle, Balanus amphitrite, is one of the primary model organisms for rocky-shore ecology studies and biofouling research. This barnacle species has a complex life cycle during which the swimming nauplius molts six times and transforms into a cyprid stage. Cyprids must attach to a surface to metamorphose into a juvenile barnacle. To clarify the overall profile of protein expression during larval development and metamorphosis, 2-DE was used to compare the proteome of the nauplius, the swimming cyprid, the attached cyprid, and the metamorphosed cyprid. The proteome of the swimming cyprid was distinctly different from that of other life stages and had about 400 spots. The proteomes of the attached and metamorphosed cyprids were similar with respect to major proteins but had significantly lower numbers of spots compared to that of swimming larval stages. Obviously, synthesis of most proteins from swimming cyprids was switched off after attachment and metamorphosis. Our advanced MS analysis (MALDI-TOF/TOF MS/MS) allowed us to identify the proteins that were differentially and abundantly expressed in the swimming cyprid. These proteins included signal transduction proteins (adenylate cyclase and calmodulin) and juvenile hormone binding proteins. In summary, for the first time, we have analyzed the global protein expression pattern of fouling marine invertebrate larvae during metamorphosis. Our study provides new insights into the mechanisms of barnacle larval metamorphosis and also provides a foundation for exploring novel targets for antifouling treatments.  相似文献   

10.
The effects of films of two strains of a marine bacterium, Deleya marina (ATCC 25374 and 27129) on the attachment response of cypris larvae of the balanomorph barnacle, Balanus amphitrite, were examined in the laboratory. Tests showed that the cell-surface hydrophobicities of the two bacteria in suspension were different. In contrast, films derived from these cells were both highly wettable (i.e., displayed high surface free energy). Assays (22 hours) compared permanent attachment of larval barnacles to films derived from exponential and stationary phase cells for both bacteria. These films either had no effect or inhibited attachment of both 0-day- and 4-day-old cypris larvae when compared with unfilmed controls. Our data indicate that inhibition of larval barnacle attachment by films of the two bacteria is the result of factors other than surface free energy. Production of chemical barnacle settlement inhibitors by the bacteria is hypothesized.Offprint requests to: J. S. Maki.  相似文献   

11.
Fouling species produce adhesive polymers during the settlement, adhesion and colonization of new surfaces in the marine environment. The present paper tests the hypothesis that enzymes of the appropriate specificity may prevent biofouling by hydrolysing these adhesive polymers. Seventeen commercially available enzyme preparations designed originally for bulk use in a range of end-use applications were tested for their effects on the settlement and/or adhesion of three major fouling species, viz. the green alga Ulva linza, the diatom Navicula perminuta and the barnacle Balanus amphitrite. The serine-proteases were found to have the broadest antifouling potential reducing the adhesion strength of spores and sporelings of U. linza, cells of N. perminuta and inhibiting settlement of cypris larvae of B. amphitrite. Mode-of-action studies on the serine-protease, Alcalase, indicated that this enzyme reduced adhesion of U. linza in a concentration-dependent manner, that spores of the species could recover their adhesive strength if the enzyme was removed and that the adhesive of U. linza and juvenile cement of B. amphitrite became progressively less sensitive to hydrolysis as they cured.  相似文献   

12.

Laboratory experiments were conducted to study the interaction between adhesion of the bacterium Halomonas marina to substrata of different wettabilities, the combination of which has been demonstrated to influence the attachment response of cyprid larvae of the barnacle Balanus amphitrite. Cyprid attachment in the presence of bacterial films was shown to be inhibited when films were on polystyrene but not on tissue‐culture polystyrene or glass. Using an enzyme‐linked lectin assay, bacteria on polystyrene showed an increase in binding of the lectin concanavalin A compared to bacteria on tissue‐culture treated polystyrene, indicating a difference in surface polymers associated with H. marina when attached to different substrata. Although bacterial growth supernatants when adsorbed to polystyrene were inhibitory to barnacle attachment, exopolysaccharides, to which the lectins may be binding, were not inhibitory. The data indicate that adhesion of films of bacteria to polystyrene alters the exopolymer production by H. marina and it is suggested that this change may be involved in the inhibition of cyprid attachment. However, the inhibition of cyprid larvae does not appear to be associated with the exopolysaccharides of the bacterium.  相似文献   

13.
Kamino K  Nakano M  Kanai S 《The FEBS journal》2012,279(10):1750-1760
Barnacles are a unique sessile crustacean that attach irreversibly and firmly to foreign underwater surfaces. Its biological underwater adhesive is a peculiar extracellular multi-protein complex. Here we characterize one of the two major proteins, a 52 kDa protein found in the barnacle cement complex. Cloning of the cDNA revealed that the protein has no homolog in the nonredundant database. The primary structure consists of four long sequence repeats. The process of dissolving the protein at the adhesive joint of the animal by various treatments was monitored in order to obtain insight into the molecular mechanism involved in curing of the adhesive bulk. Treatments with protein denaturant, reducing agents and/or chemical-specific proteolysis in combination with 2D diagonal PAGE indicated no involvement of the protein in intermolecular cross-linkage/polymerization, including formation of intermolecular disulfide bonds. As solubilization of the proteins required high concentrations of denaturing agents, it appears that both the conformation of the protein as building blocks and non-covalent molecular interactions between the building blocks, possibly hydrophobic interactions and hydrogen bonds, are crucial for curing of the cement. It was also suggested that the protein contributes to surface coupling by an anchoring effect to micro- to nanoscopic roughness of surfaces.  相似文献   

14.
Although fungi are known to colonize and decompose plant tissues in various environments, there is scanty information on fungal communities on wetland plants, their relation to microhabitat conditions, and their link to plant litter decomposition. We examined fungal diversity and succession on Phragmites australis leaves both attached to standing shoots and decaying in the litter layer of a brackish tidal marsh. Additionally, we followed changes in fungal biomass (ergosterol), leaf nitrogen dynamics, and litter mass loss on the sediment surface of the marsh. Thirty-five fungal taxa were recorded by direct observation of sporulation structures. Detrended correspondence analysis and cluster analysis revealed distinct communities of fungi sporulating in the three microhabitats examined (middle canopy, top canopy, and litter layer), and indicator species analysis identified a total of seven taxa characteristic of the identified subcommunities. High fungal biomass developed in decaying leaf blades attached to standing shoots, with a maximum ergosterol concentration of 548 ± 83 μg g–1 ash-free dry mass (AFDM; mean ± SD). When dead leaves were incorporated in the litter layer on the marsh surface, fungi experienced a sharp decline in biomass (to 191 ± 60 μg ergosterol g–1 AFDM) and in the number of sporulation structures. Following a lag phase, species not previously detected began to sporulate. Leaves placed in litter bags on the sediment surface lost 50% of their initial AFDM within 7 months (k = −0.0035 day–1) and only 21% of the original AFDM was left after 11 months. Fungal biomass accounted for up to 34 ± 7% of the total N in dead leaf blades on standing shoots, but to only 10 ± 4% in the litter layer. These data suggest that fungi are instrumental in N retention and leaf mass loss during leaf senescence and early aerial decay. However, during decomposition on the marsh surface, the importance of living fungal mass appears to diminish, particularly in N retention, although a significant fraction of total detrital N may remain associated with dead hyphae.  相似文献   

15.
Barnacles produce a cement that is a proteinaceous underwater adhesive for their secure attachment to the substratum. The biochemical properties of the cement have not previously been elucidated, because the insolubility of the cement proteins hampers their purification and characterization. We developed a non-hydrolytic method to render soluble most of the cement components, thereby allowing the proteins to be analyzed. Megabalanus rosa cement could be almost completely rendered soluble by its reduction with 0.5 m dithiothreitol at 60 degrees C in a 7 m guanidine hydrochloride solution, the high concentration of dithiothreitol being indispensable to achieve this. The effectiveness of this reduction treatment was confirmed by the detachment of the barnacle from the substratum. Three proteins comprising up to 94% of the whole cement were identified as the major cement components. The cDNA clone of one of these major proteins was isolated, and the site-specific expression of the gene in the basal portion of the adult barnacle, where the cement glands are located, was demonstrated. A sequence analysis revealed this cement component to be a novel protein of 993 amino acid residues, including a signal peptide. This is the first report of the major component of the barnacle cement protein complex.  相似文献   

16.
17.
Kei Kamino 《Biofouling》2013,29(7):755-760
Balanomorphan barnacles attach their calcareous bases to a variety of substrata, including others of the same species, through secretion of an underwater adhesive, commonly referred to as cement. In this multi-functional process of underwater attachment, curing of the adhesive is crucial for the formation of a secure attachment. To date, there has been no direct evidence presented to suggest the involvement of cross-linking or polymerization in the cement curing process, despite the emergence of this hypothesis in the recent literature. A recently proposed mechanism for cement curing involves glutamyl-lysine cross-linking via the action of trans-glutaminase. However, in the opinion of the author, inadequate attention may have been paid to sample collection during the study and the conditions used in the analysis may not be adequate to support the conclusions of the paper. Indeed, further investigation, the results of which are presented here, did not provide any evidence to support adhesive curing via glutamyl-lysine cross-linking. Therefore, the hypothesis that the process of cement curing is similar to the clotting system of barnacle hemolymph is not compatible with the data reported so far. In order to allay any potential confusion, a new definition of the barnacle cement is proposed.  相似文献   

18.

This study investigates five designed micro‐textured surfaces and their effects on barnacle fouling and hydrodynamic drag. Three of the micro‐textures were developed in the present study and evaluated together with two commercial riblet films. All micro‐structures were arranged as longitudinal grooves with different profile depths, widths and angles of inclination. In field tests the recruitment of the barnacle Balanus improvisus on micro‐textured surfaces and smooth controls was evaluated. All micro‐textured surfaces reduced recruitment, and the most efficient texture reduced recruitment by 98%. For some micro‐textures the reduction of recruitment declined as settlement intensity increased. In a correlative analysis, the trigonometric inclination of the micro‐structures explained most of the recruitment reduction. The steepest angle of inclination caused a massive reduction in barnacle settlement. Surface micro‐structures may affect the boundary‐layer flow and the hydrodynamic drag (skin friction) of the surface. The skin friction was empirically measured in a flow channel using a sub‐set of the tested micro‐textures. The measurements of skin friction showed that the orientation of the microstructures is important, with a minimum friction when the grooves are parallel to the flow. For one of the micro‐textures the skin friction was ca 10% lower compared to a hydraulically smooth surface. It is concluded that, depending on the flow speed, micro‐textures will not significantly increase skin friction when arranged parallel to the flow, even at moderate protrusion through the viscous sub‐layer.  相似文献   

19.
Remains of the extinct sphenophyte (horsetail) Neocalamites are most widespread in the Middle–Upper Triassic and are typically represented by stem and leaf fragments. Here we report on spectacular new finds of Neocalamites from the Late Triassic Yangcaogou Formation in Liaoning Province, China that include bedding surfaces dominated by nearly complete aerial stems with attached leaf whorls and rare bractless cones. They reveal a monopodial growth habit for the stems, which are covered with downward projecting prickles that probably provided protection against herbivores. These features provide the basis for a new proposed species, Neocalamites horridus. The nodes bear whorls of very long leaves mainly free to their bases, and one specimen bears an attached cone on a long peduncle. Identical dispersed cones have also been recovered. The leaves of adjacent monopodial stems most likely interlocked to support growth in large stands akin to the role now played by branches in large modern Equisetum species. The new Chinese Neocalamites is among the most confidently reconstructed species, and indicates a greater diversity of sphenophyte morphology during the Mesozoic than previously realized.  相似文献   

20.
The attachment of a marine Pseudomonas sp. to a variety of surfaces was investigated, and the number of bacteria which became attached was related to the surface charge and degree of hydrophobicity of the substratum. Large numbers of bacteria attached to hydrophobic plastics with little or no surface charge [Teflon, polyethylene, polystyrene, poly(ethylene terephthalate)]; moderate numbers attached to hydrophilic metals with a positive (platinum) or neutral (germanium) surface charge; and very few attached to hydrophilic, negatively charged substrata (glass, mica, oxidized plastics). The results suggest that both electrostatic and hydrophobic interactions are involved in bacterial attachment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号