首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Escherichia coli exposure to sublethal antibiotic concentrations induced an increase in cell polyamine contents. Maximum accumulation of putrescine and spermidine in response to antibiotics-induced oxidative stress preceded the increment of cadaverine, the content of which was dependent on the rpoS expression level and reached the maximum in response to fluoroquinolones. The polyamine positive modulating effects on rpoS expression increased in the following order: cadaverine-putrescine-spermidine. The reason for cadaverine accumulation was the increase in activities of lysine decarboxylases CadA and Ldc. High cadaverine accumulation in the cells exposed to fluoroquinolones and cephalosporins resulted in the reduction of porin permeability; so it was considered as a response aimed at cell protection against antibiotic penetration into the cell. Netilmycin, unlike other antibiotics, did not substantially affect the lysine decarboxylase activity and cellular polyamine pools.  相似文献   

2.
Cadaverine has the potential to become an important platform chemical for the production of nylon. Previously, a system that overexpresses the Klebsiella oxytoca lysine decarboxylase in Escherichia coli was engineered. The system was optimized by codon optimization, and tuning the expression level of the gene by testing various promoters and inducer concentrations. Here, we further improved the system by optimizing the sequence located in the region of the ribosome‐binding site in order to enhance translation efficiency. We also identified mutant lysine decarboxylase enzymes that demonstrated enhanced cadaverine‐production ability. Together, these modifications increased cadaverine production in the system by 50%, and the system has a yield of 80% from lysine‐HCl under the conditions we tested. This is the first time that a system to produce cadaverine using the lysine decarboxylase from K. oxytoca performed at a level that is competitive with the traditional systems using the E. coli lysine decarboxylases in both lab‐scale and batch fermentation conditions.  相似文献   

3.
Regulation of lysine decarboxylase activity in Escherichia coli K-12   总被引:2,自引:0,他引:2  
The biodegradative lysine decarboxylase of E. coli has been reported to attain a higher specific activity when grown to saturation in the presence of excess lysine under conditions of low pH and absence of aeration. In order to examine possible sources of the pH and anaerobic regulation, a series of isogenic strains of E. coli K-12 were constructed. The effects of cadR-, fnr -, cya -, crp -and pgl -mutations on lysine decarboxylase expression were examined. Cultures were grown in a lysine supplemented rich medium at pH 5.5, pH 6.8, and pH 8.0 with and without aeration and the enzyme was assayed from log phase cultures. The results suggested that the pH and air responses were independent and that these known regulatory processes are not responsible for this regulation of the biodegradative lysine decarboxylase.  相似文献   

4.
The effect of fusing the PelB signal sequence to lysine/cadaverine antiporter (CadB) on the bioconversion of l-lysine to cadaverine was investigated. To construct a whole-cell biocatalyst for cadaverine production, four expression plasmids were constructed for the co-expression of lysine decarboxylase (CadA) and lysine/cadaverine antiporter (CadB) in Escherichia coli. Expressing CadB with the PelB signal sequence increased cadaverine production by 12 %, and the optimal expression plasmid, pETDuet-pelB-CadB-CadA, contained two T7 promoter-controlled genes, CadA and the PelB-CadB fusion protein. Based on pETDuet-pelB-CadB-CadA, a whole-cell system for the bioconversion of l-lysine to cadaverine was constructed, and three strategies for l-lysine feeding were evaluated to eliminate the substrate inhibition problem. A cadaverine titer of 221 g l?1 with a molar yield of 92 % from lysine was obtained.  相似文献   

5.
A five carbon linear chain diamine, cadaverine (1,5‐diaminopentane), is an important platform chemical having many applications in chemical industry. Bio‐based production of cadaverine from renewable feedstock is a promising and sustainable alternative to the petroleum‐based chemical synthesis. Here, we report development of a metabolically engineered strain of Escherichia coli that overproduces cadaverine in glucose mineral salts medium. First, cadaverine degradation and utilization pathways were inactivated. Next, L ‐lysine decarboxylase, which converts L ‐lysine directly to cadaverine, was amplified by plasmid‐based overexpression of the cadA gene under the strong tac promoter. Furthermore, the L ‐lysine biosynthetic pool was increased by the overexpression of the dapA gene encoding dihydrodipicolinate synthase through the replacement of the native promoter with the strong trc promoter in the genome. The final engineered strain was able to produce 9.61 g L−1 of cadaverine with a productivity of 0.32 g L−1 h−1 by fed‐batch cultivation. The strategy reported here should be useful for the bio‐based production of cadaverine from renewable resources. Biotechnol. Bioeng. 2011; 108:93–103. © 2010 Wiley Periodicals, Inc.  相似文献   

6.
Methanol is regarded as an attractive substrate for biotechnological production of value-added bulk products, such as amino acids and polyamines. In the present study, the methylotrophic and thermophilic bacterium Bacillus methanolicus was engineered into a microbial cell factory for the production of the platform chemical 1,5-diaminopentane (cadaverine) from methanol. This was achieved by the heterologous expression of the Escherichia coli genes cadA and ldcC encoding two different lysine decarboxylase enzymes, and by increasing the overall L-lysine production levels in this host. Both CadA and LdcC were functional in B. methanolicus cultivated at 50°C and expression of cadA resulted in cadaverine production levels up to 500 mg l−1 during shake flask conditions. A volume-corrected concentration of 11.3 g l−1 of cadaverine was obtained by high-cell density fed-batch methanol fermentation. Our results demonstrated that efficient conversion of L-lysine into cadaverine presumably has severe effects on feedback regulation of the L-lysine biosynthetic pathway in B. methanolicus. By also investigating the cadaverine tolerance level, B. methanolicus proved to be an exciting alternative host and comparable to the well-known bacterial hosts E. coli and Corynebacterium glutamicum. This study represents the first demonstration of microbial production of cadaverine from methanol.  相似文献   

7.
8.
The gene of a bacterial lysine decarboxylase (ldc) fused to arbcS transit peptide coding sequence (tp), and under the control of the CaMV 35S promoter, was expressed in hairy root cultures ofNicotiana tabacum. The fusion of theldc to the targeting signal sequence improved the performance of the bacterial gene in the plant cells in many respects. Nearly all transgenic hairy root cultures harbouring the35S-tp-ldc gene contained distinctly higher lysine decarboxylase activity (from 1.5 to 30 pkat LDC per mg protein) than those which had been transformed with constructs in which the gene had been directly cloned behind the CaMV 35S promoter. The higher enzyme activity led to the accumulation of up to 0.7% cadaverine on a dry mass basis. In addition, part of the cadaverine pool was used for increased biosynthesis of anabasine, an alkaloid which was hardly detectable in control cultures. The best line contained anabasine levels of 0.5% dry mass, which could further be enhanced by feeding of lysine.  相似文献   

9.
Effects of synergism and antagonism of antibacterial drugs and magnetic isotope of magnesium 25Mg on antibiotic resistance of bacteria E. coli were discovered. Fourteen antibiotics from seven different groups were tested. The increase in antibiotic resistance in the presence of the ion 25Mg2+ was discovered in E. coli cells incubated with quinolones/fluoroquinolones, indicating the inhibiting effect of the magnetic moments of nuclei 25Mg on DNA synthesis. The change in antibiotic resistance was also detected in bacteria affected by magnesium 25Mg and certain antibiotics from aminoglycoside and lincosamide groups.  相似文献   

10.
The stringent response regulator ppGpp has recently been shown by our group to inhibit the Escherichia coli inducible lysine decarboxylase, LdcI. As a follow-up to this observation, we examined the mechanisms that regulate the activities of the other four E. coli enzymes paralogous to LdcI: the constitutive lysine decarboxylase LdcC, the inducible arginine decarboxylase AdiA, the inducible ornithine decarboxylase SpeF, and the constitutive ornithine decarboxylase SpeC. LdcC and SpeC are involved in cellular polyamine biosynthesis, while LdcI, AdiA, and SpeF are involved in the acid stress response. Multiple mechanisms of regulation were found for these enzymes. In addition to LdcI, LdcC and SpeC were found to be inhibited by ppGpp; AdiA activity was found to be regulated by changes in oligomerization, while SpeF and SpeC activities were regulated by GTP. These findings indicate the presence of multiple mechanisms regulating the activity of this important family of decarboxylases. When the enzyme inhibition profiles are analyzed in parallel, a "zone of inhibition" between pH 6 and pH 8 is observed. Hence, the data suggest that E. coli utilizes multiple mechanisms to ensure that these decarboxylases remain inactive around neutral pH possibly to reduce the consumption of amino acids at this pH.  相似文献   

11.
Lysine decarboxylase converts l ‐lysine to cadaverine as a branching point for the biosynthesis of plant Lys‐derived alkaloids. Although cadaverine contributes towards the biosynthesis of Lys‐derived alkaloids, its catabolism, including metabolic intermediates and the enzymes involved, is not known. Here, we generated transgenic Arabidopsis lines by expressing an exogenous lysine/ornithine decarboxylase gene from Lupinus angustifolius (La‐L/ODC) and identified cadaverine‐derived metabolites as the products of the emerged biosynthetic pathway. Through untargeted metabolic profiling, we observed the upregulation of polyamine metabolism, phenylpropanoid biosynthesis and the biosynthesis of several Lys‐derived alkaloids in the transgenic lines. Moreover, we found several cadaverine‐derived metabolites specifically detected in the transgenic lines compared with the non‐transformed control. Among these, three specific metabolites were identified and confirmed as 5‐aminopentanal, 5‐aminopentanoate and δ‐valerolactam. Cadaverine catabolism in a representative transgenic line (DC29) was traced by feeding stable isotope‐labeled [α‐15N]‐ or [ε‐15N]‐l ‐lysine. Our results show similar 15N incorporation ratios from both isotopomers for the specific metabolite features identified, indicating that these metabolites were synthesized via the symmetric structure of cadaverine. We propose biosynthetic pathways for the metabolites on the basis of metabolite chemistry and enzymes known or identified through catalyzing specific biochemical reactions in this study. Our study shows that this pool of enzymes with promiscuous activities is the driving force for metabolite diversification in plants. Thus, this study not only provides valuable information for understanding the catabolic mechanism of cadaverine but also demonstrates that cadaverine accumulation is one of the factors to expand plant chemodiversity, which may lead to the emergence of Lys‐derived alkaloid biosynthesis.  相似文献   

12.
Exposing etiolated pea seedlings to ethylene which inhibited the activity of arginine decarboxylase and S-adenosylmethionine decarboxylase caused an increase in the level of cadaverine. The elevated level of cadaverine resulted from an increase in lysine decarboxylase activity in the tissue exposed to ethylene. The hormone did not affect the apparent Km of the enzyme, but the apparent Vmax was increased by 96%. While lysine decarboxylase activity in the ethylene-treated plants increased in both the meristematic and the elongation zone tissue, cadaverine accumulation was observed in the latter only. The enhancement by ethylene of the enzyme activity was reversed completely 24 hours after transferring the plants to an ethylene-free atmosphere. It is postulated that the increase in lysine decarboxylase activity, and the consequent accumulation of cadaverine in ethylene-treated plants, is of a compensatory nature as a response to the inhibition of arginine and S-adenosylmethionine decarboxylase activity provoked by ethylene.  相似文献   

13.
Structural backbones of iron‐scavenging siderophore molecules include polyamines 1,3‐diaminopropane and 1,5‐diaminopentane (cadaverine). For the cadaverine‐based desferroxiamine E siderophore in Streptomyces coelicolor, the corresponding biosynthetic gene cluster contains an ORF encoded by desA that was suspected of producing the cadaverine (decarboxylated lysine) backbone. However, desA encodes an l ‐2,4‐diaminobutyrate decarboxylase (DABA DC) homologue and not any known form of lysine decarboxylase (LDC). The only known function of DABA DC is, together with l ‐2,4‐aminobutyrate aminotransferase (DABA AT), to synthesize 1,3‐diaminopropane. We show here that S. coelicolor desA encodes a novel LDC and we hypothesized that DABA DC homologues present in siderophore biosynthetic clusters in the absence of DABA AT ORFs would be novel LDCs. We confirmed this by correctly predicting the LDC activity of a DABA DC homologue from a Yersinia pestis siderophore biosynthetic pathway. The corollary was confirmed for a DABA DC homologue, adjacent to a DABA AT ORF in a siderophore pathway in the cyanobacterium Anabaena variabilis, which was shown to be a bona fide DABA DC. These findings enable prediction of whether a siderophore pathway will utilize 1,3‐diaminopropane or cadaverine, and suggest that the majority of bacteria use DABA AT and DABA DC for siderophore, rather than norspermidine/polyamine biosynthesis.  相似文献   

14.
Here, we demonstrated the one-step production of cadaverine from starch using a Corynebacterium glutamicum strain coexpressing Streptococcus bovis 148 α-amylase (AmyA) and Escherichia coli K-12 lysine decarboxylase (CadA). We constructed the E. coliC. glutamicum shuttle vector, which produces CadA under the control of the high constitutive expression (HCE) promoter, and transformed this vector into C. glutamicum CSS secreting AmyA. The engineered C. glutamicum expressed both CadA and AmyA, which retained their activity. We performed cadaverine fermentation using 50 g/l soluble starch as the sole carbon source without pyridoxal-5’-phosphate, which is the coenzyme for CadA. C. glutamicum coexpressing AmyA and CadA successfully produced cadaverine from soluble starch and the yield of cadaverine was 23.4 mM after 21 h. CadA expression levels under the control of the HCE promoter were assumed to be sufficient to convert l-lysine to cadaverine, as there was no accumulation of l-lysine in the culture medium during fermentation. Thus, we demonstrated that C. glutamicum has great potential to produce cadaverine from biomass resources.  相似文献   

15.
When the polyamine content of soybean (Glycine max) seeds was examined during the early stages of germination, the major polyamine in the cotyledons was found to be spermidine, followed by spermine; while very low concentrations of cadaverine were found. In the embryonic axes, however, cadaverine was the main polyamine and its content markedly increased 24 hours after the start of germination. When the germination of the seeds was performed in the presence of 1 millimolar α-difluoromethylornithine (DFMO), a marked decrease in the cadaverine content was found, while the other polyamines were not affected. This decrease of the cadaverine content was already noticeable after the first hours of germination. In the presence of DFMO, a pronounced elongation in the roots of the seedlings and a marked decrease in the appearance of secondary roots as compared with controls, was observed. This abnormal rooting of the seedlings caused by DFMO was almost completely reverted by the addition of 1 millimolar cadaverine. The latter also increased the appearance of secondary roots in the seedlings. The decrease in the cadaverine content produced by DFMO could be traced to a strong inhibition of lysine decarboxylase. A temporal correlation between the increase in cadaverine content and the increase in lysine decarboxylase activity was found. Both reached a maximum at the second day of germination. The activity of diamine oxidase, the cadaverine degrading enzyme, started to increase at the third day and reached a maximum between the fourth and fifth day of germination. DFMO increased the activity of diamine oxidase by about 25%. Hence, the large decrease in cadaverine content produced by DFMO has to be attributed to the in vivo suppression of lysine decarboxylase activity. Ornithine decarboxylase activity was also suppressed by DFMO, but putrescine and spermidine contents were not affected, except in the meristematic tissues. The obtained results suggest an important role for cadaverine in the normal rooting process of soybean seedlings.  相似文献   

16.
An exposure of cultured Ehrlich ascites carcinoma cells to DL-α-difluoromethyl ornithine, an irreversible inhibitor of ornithine decarboxylase (EC 4.1.1.17), rapidly depleted the tumor cells of putrescine and spermidine. The decrease in the cellular concentrations of these two natural polyamines, however, was accompanied by a striking appearance of two new major amines: cadaverine and a compound tentatively identified as N-3-aminopropyl-1,5-diaminopentane (aminopropylcadaverine). When the cultures were grown in the presence of uniformly labeled [14C]lysine, tumor cells exposed to difluoromethyl ornithine converted lysine to cadaverine and aminopropyl cadaverine at strikingly enhanced rate. The difluoromethyl ornithine-induced accumulation and synthesis of cadaverine and aminopropylcadaverine were totally prevented by the presence of micromolar concentrations of spermidine (or spermine) in the culture media.  相似文献   

17.
Lactic acid bacteria play a pivotal role in many food fermentations and sometimes represent a health threat due to the ability of some strains to produce biogenic amines that accumulate in foods and cause trouble following ingestion. These strains carry specific enzymatic systems catalyzing the uptake of amino acid precursors (e.g., ornithine and lysine), the decarboxylation inside the cell, and the release of the resulting biogenic amines (e.g., putrescine and cadaverine). This study aimed to identify the system involved in production of cadaverine from lysine, which has not been described to date for lactic acid bacteria. Strain Lactobacillus saerimneri 30a (formerly called Lactobacillus sp. 30a) produces both putrescine and cadaverine. The sequencing of its genome showed that the previously described ornithine decarboxylase gene was not associated with the gene encoding an ornithine/putrescine exchanger as in other bacteria. A new hypothetical decarboxylation system was detected in the proximity of the ornithine decarboxylase gene. It consisted of two genes encoding a putative decarboxylase sharing sequence similarities with ornithine decarboxylases and a putative amino acid transporter resembling the ornithine/putrescine exchangers. The two decarboxylases were produced in Escherichia coli, purified, and characterized in vitro, whereas the transporter was heterologously expressed in Lactococcus lactis and functionally characterized in vivo. The overall data led to the conclusion that the two decarboxylases and the transporter form a three-component decarboxylation system, with the new decarboxylase being a specific lysine decarboxylase and the transporter catalyzing both lysine/cadaverine and ornithine/putrescine exchange. To our knowledge, this is an unprecedented observation of a bacterial three-component decarboxylation system.  相似文献   

18.
Huang X  Wei Z  Zhao G  Gao X  Yang S  Cui Y 《Current microbiology》2008,56(4):376-381
In this paper, the sensitivity of Escherichia coli to surfactin and fengycin was observed, and the optimization of the antimicrobial activity of surfactin and fengycin to E. coli in milk by a response surface methodology was studied. Results showed that E. coli had high sensitivity to these antibiotics, whose minimal inhibitory concentrations were 15.625 μg·mL−1 and 31.25 μg·mL−1, respectively. The optimization result indicated that E. coli could be sterilized by 5 orders of magnitude when the temperature was 5.5°C, the action time was 15.8 h, and the concentration (surfactin/fengycin weight ratio 1:1) was 14.63 μg·mL−1.  相似文献   

19.
Through metabolic pathway engineering, novel microbial biocatalysts can be engineered to convert renewable resources into useful chemicals, including monomer building‐blocks for bioplastics production. Here we describe the systematic engineering of Escherichia coli to produce, as individual products, two 5‐carbon polyamide building blocks, namely 5‐aminovalerate (AMV) and glutarate. The modular pathways were derived using “parts” from the natural lysine degradation pathway of Pseudomonas putida KT2440. Endogenous over‐production of the required precursor, lysine, was first achieved through metabolic deregulation of its biosynthesis pathway by introducing feedback resistant mutants of aspartate kinase III and dihydrodipicolinate synthase. Further disruption of native lysine decarboxylase activity (by deleting cadA and ldcC) limited cadaverine by‐product formation, enabling lysine production to 2.25 g/L at a glucose yield of 138 mmol/mol (18% of theoretical). Co‐expression of lysine monooxygenase and 5‐aminovaleramide amidohydrolase (encoded by davBA) then resulted in the production of 0.86 g/L AMV in 48 h. Finally, the additional co‐expression of glutaric semialdehyde dehydrogenase and 5‐aminovalerate aminotransferase (encoded by davDT) led to the production of 0.82 g/L glutarate under the same conditions. At this output, yields on glucose were 71 and 68 mmol/mol for AMV and glutarate (9.5 and 9.1% of theoretical), respectively. These findings further expand the number and diversity of polyamide monomers that can be derived directly from renewable resources. Biotechnol. Bioeng. 2013; 110: 1726–1734. © 2013 Wiley Periodicals, Inc.  相似文献   

20.
Escherichia coli is an enteric bacterium that is capable of growing over a wide range of pH values (pH 5 - 9)1 and, incredibly, is able to survive extreme acid stresses including passage through the mammalian stomach where the pH can fall to as low as pH 1 - 22. To enable such a broad range of acidic pH survival, E. coli possesses four different inducible amino acid decarboxylases that decarboxylate their substrate amino acids in a proton-dependent manner thus raising the internal pH. The decarboxylases include the glutamic acid decarboxylases GadA and GadB3, the arginine decarboxylase AdiA4, the lysine decarboxylase LdcI5, 6 and the ornithine decarboxylase SpeF7. All of these enzymes utilize pyridoxal-5''-phospate as a co-factor8 and function together with inner-membrane substrate-product antiporters that remove decarboxylation products to the external medium in exchange for fresh substrate2. In the case of LdcI, the lysine-cadaverine antiporter is called CadB. Recently, we determined the X-ray crystal structure of LdcI to 2.0 Å, and we discovered a novel small-molecule bound to LdcI the stringent response regulator guanosine 5''-diphosphate,3''-diphosphate (ppGpp) 14. The stringent response occurs when exponentially growing cells experience nutrient deprivation or one of a number of other stresses9. As a result, cells produce ppGpp which leads to a signaling cascade culminating in the shift from exponential growth to stationary phase growth10. We have demonstrated that ppGpp is a specific inhibitor of LdcI 14. Here we describe the lysine decarboxylase assay, modified from the assay developed by Phan et al.11, that we have used to determine the activity of LdcI and the effect of pppGpp/ppGpp on that activity. The LdcI decarboxylation reaction removes the α-carboxy group of L-lysine and produces carbon dioxide and the polyamine cadaverine (1,5-diaminopentane)5. L-lysine and cadaverine can be reacted with 2,4,6-trinitrobenzensulfonic acid (TNBS) at high pH to generate N,N''-bistrinitrophenylcadaverine (TNP-cadaverine) and N,N′-bistrinitrophenyllysine (TNP-lysine), respectively11. The TNP-cadaverine can be separated from the TNP-lysine as the former is soluble in organic solvents such as toluene while the latter is not (See Figure 1). The linear range of the assay was determined empirically using purified cadaverine.Download video file.(50M, mov)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号