首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Habitat degradation through agricultural land use is the major factor threatening lotic ecosystems. Although black flies are major components of these ecosystems, the impact of agricultural land use on species diversity and species assemblages has been largely ignored in tropical streams of the Oriental region. The objectives of this study are to examine patterns of species distribution and species richness and to compare black fly species richness and species assemblages in forest and agricultural streams in Thailand. A total of 143 collections were made from 70 stream sites between June 2007 and May 2008. Whereas 19 black fly species found in these collections were all found in forest sites, only 13 species were found in agricultural sites. High species richness was associated with larger, faster, and cooler streams with larger streambed particles and the presence of riparian trees. Logistic regression analyses revealed that stream size, velocity, and riparian vegetation are among the most important factors determining patterns of spatial distribution. The results are largely consistent with studies in other zoogeographic regions, suggesting the existence of general rules for black fly species distributions. Comparisons of the physicochemical conditions between forest and agricultural streams indicated that streams in agricultural areas are warmer, with higher conductivity and fewer riparian trees. Species richness was significantly higher in forest than in agricultural streams (t = 3.61, P < 0.001). Streams in forest areas were predominantly occupied by S. siamense (73%) but other species were also found at a relatively high frequency (>20%) of the sampling sites. In contrast, streams in agricultural areas were predominantly occupied by S. aureohirtum (>80%) among the sole black fly species at 27% of the sites. The results indicate that agricultural land use has a significantly detrimental impact on black fly diversity and species assemblages. Handling editor: D. Dudgeon  相似文献   

2.
We attempted to identify spatial patterns and determinants for benthic algal assemblages in Mid-Atlantic streams. Periphyton, water chemistry, stream physical habitat, riparian conditions, and land cover/use in watersheds were characterized at 89 randomly selected stream sites in the Mid-Atlantic region. Cluster analysis (TWINSPAN) partitioned all sites into six groups on the basis of diatom species composition. Stepwise discriminant function analysis indicated that these diatom groups can be best separated by watershed land cover/use (percentage forest cover), water temperature, and riparian conditions (riparian agricultural activities). However, the diatom-based stream classification did not correspond to Omernik's ecoregional classification. Algal biomass measured as chl a can be related to nutrients in habitats where other factors do not constrain accumulation. A regression tree model indicated that chl a concentrations in the Mid-Atlantic streams can be best predicted by conductivity, stream slope, total phosphorus, total nitrogen, and riparian canopy coverage. Our data suggest that broad spatial patterns of benthic diatom assemblages can be predicted both by coarse-scale factors, such as land cover/use in watersheds, and by site-specific factors, such as riparian conditions. However, algal biomass measured as chl a was less predictable using a simple regression approach. The regression tree model was effective for showing that ecological determinants of chl a were hierarchical in the Mid-Atlantic streams.  相似文献   

3.
1. In sub‐Saharan Africa, tropical forests are increasingly threatened by accelerating rates of forest conversion and degradation. In East Africa, the larger tracts of intact rainforest lie largely in protected areas surrounded by converted landscape. Thus, there is critical need to understand the functional links between large‐scale land use and changes in river conditions, and the implications of park boundaries on catchment integrity. 2. The objective of this study was to use the mosaic of heavily converted land and pristine forest created by the protection of the high‐altitude rainforest in Bwindi Impenetrable National Park, Uganda to explore effects of deforestation on aquatic systems and the value of forest in buffering effects of adjacent land conversion. A set of 16 sites was selected over four drainages to include four categories of deforestation: agricultural land, deforested upstream (of the park boundary), forest edge (park boundary) and forest. We predicted that forest buffer (downstream or on the edge) would moderate effects of deforestation. To address this prediction, we quantified relationships between disturbance level and both physicochemical characters and traits of the macroinvertebrate assemblages during six sampling periods (February 2003 and June 2004). 3. Results of both principal components analysis and cluster analyses indicated differences in limnological variables among deforestation categories. PC1 described a gradient from deforested sites with poor water quality to pristine forested sites with relatively good water quality. Agricultural sites and deforested upstream sites generally had the highest turbidity, total dissolved solids (TDS), and conductivity values and low transparency values. Forest sites and boundary site groups generally exhibited low turbidity, TDS, and conductivity values and high water transparency values. Sites also clustered according to deforestation categories; forest and forested edge sites formed a cluster independent of both agricultural land and deforested‐upstream. 4. Water transparency, water temperature, and pH were the most important factors predicting benthic macroinvertebrate assemblages. Sensitive invertebrate families of Trichoptera, Ephemeroptera, Plecoptera, and Odonata dominated forested sites with high water transparency, low water temperature, and low pH while the tolerant families of Ephemeroptera, Diptera, Hemiptera, and Coleoptera were abundant in agriculturally impacted sites with low water transparency, high water temperature, and high pH. 5. This study provides support for the importance of riparian buffers in moderating effects of deforestation. Forest and forested edge sites were more similar in both limnological and macroinvertebrate assemblage structure than sites within or downstream from agricultural lands. If the protected area cannot encompass the catchment, the use of rivers as park boundaries may help to maintain the biological integrity of the rivers by buffering one side of the watercourse.  相似文献   

4.
1. The influence of altitude and land-use changes on macroinvertebrate assemblages from riffles in forty-three streams in the Dolpo region of western Nepal were examined. Sampling sites ranged in altitude from 850 to 4250m, and land-use patterns fell into five categories: alpine, forest, grassland, pasture and agricultural land. 2. TWTNSPAN classification of physicochemical data separated streams into groups on the basis of climatic and physical factors. Streams from high, cold, alpine areas were separated from those in warmer, lower, agricultural areas. 3. In all, 138 macroinvertebrate taxa were collected from fifty-three insect families. Ephemeroptera were most common, especially Baetidae. 4. Taxonomic richness declined with increasing altitude. Ten insect families were significantly more abundant in lowland streams, and five were more common in alpine streams. 5. TWINSPAN and DECORANA revealed distinct invertebrate groupings of the forty-three streams surveyed. A high percentage of the variance (79.3%) in ordination space was explained by DECORANA axes 1 and 2. Altitude, temperature, stream width and land use were implicated in structuring invertebrate communities.  相似文献   

5.
It is well recognized that assemblage structure of stream macroinvertebrates changes with alterations in catchment or local land use. Our objective was to understand how the trophic ecology of benthic macroinvertebrate assemblages responds to land use changes in tropical streams. We used the isotope methodology to assess how energy flow and trophic relations among macroinvertebrates were affected in environments affected by different land uses (natural cover, pasture, sugar cane plantation). Macroinvertebrates were sampled and categorized into functional feeding groups, and available trophic resources were sampled and evaluated for the isotopic composition of 13C and 15N along streams located in the Cerrado (neotropical savanna). Streams altered by pasture or sugar cane had wider and more overlapped trophic niches, which corresponded to more generalist feeding habits. In contrast, trophic groups in streams with native vegetation had narrower trophic niches with smaller overlaps, suggesting greater specialization. Pasture sites had greater ranges of resources exploited, indicating higher trophic diversity than sites with natural cover and sugar cane plantation. We conclude that agricultural land uses appears to alter the food base and shift macroinvertebrate assemblages towards more generalist feeding behaviors and greater overlap of the trophic niches.  相似文献   

6.
Community response to environmental gradients operating at hierarchical scales was assessed in studies of benthic diatoms, macroinvertebrates and fish from 44 stream sites in the New York City watershed. Hierarchical cluster analysis (TWINSPAN) of diatoms and fish partitioned the study sites into four groups, i.e., acid streams, reservoir outlets and wetland streams, large eutrophic streams, and small eutrophic streams; macroinvertebrate TWINSPAN distinguished an additional group of silty eutrophic streams. The correspondence among the three assemblage TWINSPAN groupings was moderate, ranging from 51 to 57%. The similarity across the four major group types was the highest among large eutrophic stream and acid stream assemblages, and the lowest among small eutrophic stream assemblages. Stepwise discriminant function analysis revealed that environmental factors discriminated most effectively the diatom grouping and least effectively the fish grouping. The best environmental predictors for diatom and macroinvertebrate grouping were conductance and percent surface water, while population density was most powerful in separating the fish groups. Carbaryl was the only pesticide that correlated with macroinvertebrate grouping. Partial redundancy analyses suggested a differential dependence of freshwater communities on the scale of the environmental factors to which they respond. The role of small‐scale habitat and habitatland cover/land use interaction steadily increased across the diatom, macroinvertebrate, and fish assemblages, whereas the effect of large‐scale land cover/land use declined.  相似文献   

7.
We compared land cover, riparian vegetation, and instream habitat characteristics with stream macroinvertebrate assemblages in 25 catchments in the Carpathian Mountains in Central Europe. This study area was particularly selected because of its diverse history of forest and agricultural ecosystems linked to geopolitical dynamic, which provide a suite of unique landscape scale, land cover settings in one ecoregion. Canonical Correspondence Analysis (CCA) showed that variation in composition and structure of macroinvertebrate assemblages was primarily related to four land cover types, and not to riparian or instream habitat. These were the portions in the catchment areas of (1) broadleaved forest, (2) fine-grained agricultural landscape mosaic with scattered trees (e.g., pre-industrial cultural landscape), (3) mixed forest, and (4) natural grassland without trees. Principal Component Analysis (PCA) suggested that land cover types and stream channel substrates co-varied. The PCA also showed that chemical variables, including organic carbon, had higher values in the agricultural landscape compared to natural forests. The major source of variation among taxa in streams was higher abundance of Diptera in agricultural landscapes and of Plecoptera, Coleoptera, Trichoptera, and Amphipoda in forests. Gastropoda and Oligochaeta were more abundant in open, fine-grained agricultural landscape mosaics with scattered trees. Ephemeroptera taxa were quite indifferent to these gradients in catchment land cover, but showed a tendency of being more abundant in the pre-industrial cultural landscape. Our findings suggest that land cover can be used as a proxy of the composition and structure of macroinvertebrate assemblages. This means that land use management at the catchment scale is needed for efficient conservation and recovery of stream invertebrate communities.  相似文献   

8.
Site-specific temporal trends in algae, benthic invertebrate, and fish assemblages were investigated in 15 streams and rivers draining basins of varying land use in the south-central United States from 1993–2007. A multivariate approach was used to identify sites with statistically significant trends in aquatic assemblages which were then tested for correlations with assemblage metrics and abiotic environmental variables (climate, water quality, streamflow, and physical habitat). Significant temporal trends in one or more of the aquatic assemblages were identified at more than half (eight of 15) of the streams in the study. Assemblage metrics and abiotic environmental variables found to be significantly correlated with aquatic assemblages differed between land use categories. For example, algal assemblages at undeveloped sites were associated with physical habitat, while algal assemblages at more anthropogenically altered sites (agricultural and urban) were associated with nutrient and streamflow metrics. In urban stream sites results indicate that streamflow metrics may act as important controls on water quality conditions, as represented by aquatic assemblage metrics. The site-specific identification of biotic trends and abiotic–biotic relations presented here will provide valuable information that can inform interpretation of continued monitoring data and the design of future studies. In addition, the subsets of abiotic variables identified as potentially important drivers of change in aquatic assemblages provide policy makers and resource managers with information that will assist in the design and implementation of monitoring programs aimed at the protection of aquatic resources.  相似文献   

9.
To understand the complex relationships that exist between ant assemblages and their habitats, we performed a self-organizing map (SOM) analysis to clarify the interactions among ant diversity, spatial distribution, and land use types in Fukuoka City, Japan. A total of 52 species from 12 study sites with nine land use types were collected from 1998 to 2012. A SOM was used to classify the collected data into three clusters based on the similarities between the ant communities. Consequently, each cluster reflected both the species composition and habitat characteristics in the study area. A detrended correspondence analysis (DCA) corroborated these findings, but removal of unique and duplicate species from the dataset in order to avoid sampling errors had a marked effect on the results; specifically, the clusters produced by DCA before and after the exclusion of specific data points were very different, while the clusters produced by the SOM were consistent. In addition, while the indicator value associated with SOMs clearly illustrated the importance of individual species in each cluster, the DCA scatterplot generated for species was not clear. The results suggested that SOM analysis was better suited for understanding the relationships between ant communities and species and habitat characteristics.  相似文献   

10.
Benthic invertebrates, water quality variables, chlorophyll a and particulate organic matter (POM) were studied in 18 sites of mountain streams in Patagonia (Argentina) subjected to six different land uses: native forest, pine plantation, pasture, harvest forest, urban and reference urban. Three streams of each land use were studied in March 2006. Macroinvertebrates were sampled in three riffles and three pools (n = 108) and biomass of detrital fractions of POM were quantified. Overall benthic POM biomass was higher at native and harvest forest than pastures, whereas fine fraction (FPOM) was higher in harvest forest than in pastures. Regarding to autotrophic subsidies bryophytes were the only that changed consistently among uses. These differences in energy resources were correlated with changes in community attributes. Shredder richness was clearly higher at native and harvest forest than exotic pine plantations, collector gatherers density was consistently high at harvest sites, and total density was significantly higher at urban and harvest forest. Multidimensional scaling ordination based on macroinvertebrate density data showed a clear separation of forested (either native or exotic species) from riparian modified areas (pasture, urban and harvest sites). Environmental variables having explanation power on macroinvertebrate assemblages were mostly related with: detritus availability (wood and leaves biomass) and impairment (total phosphorous and % sand). These results confirm that macroinvertebrate assemblage structure in Patagonian low order streams can be altered by land use practices. Among guild structure measures, those indicators based on benthic community functional attributes, shredders richness and collectors density, resulted good candidates to assess land use impacts. On account of riparian corridor management may be critical to the distribution of benthic taxa, the maintenance of good conditions of vegetation adjacent to rivers will enhance water quality and the environment for highly endemic headwater communities of Patagonian streams.  相似文献   

11.
12.
1. Ecosystems are strongly influenced by land use practices. However, identifying the mechanisms behind these influences is complicated by the many potential pathways (often indirect) between land use and ecosystems and by the long‐lasting effects of past land use. To support ecosystem restoration and conservation efforts, we need to better understand these indirect and lasting effects. 2. We constructed structural equation models (SEM) to evaluate the direct and indirect effects of contemporary (2002) land use (agriculture and development) and change in land use from 1952 to 2002 on present‐day streams (n = 190) in Maryland, U.S.A. Additional variables examined included site location, system size, altitude, per cent sand in soils, riparian condition, habitat quality, stream water NO3‐N and benthic macroinvertebrate and fish measures of stream condition. Our first SEM (2002 Land Use) included the proportions of contemporary agriculture and development in catchments in the model. The second SEM (Land Use Change) included five measures of land use change (proportion agricultural in both times, developed in both times, agricultural in 1952 and developed in 2002, forested in 1952 and developed in 2002 and agricultural in 1952 and forested in 2002). 3. The data set fit both SEMs well. The 2002 Land Use model explained 71% of variation in NO3‐N and 55%, 42% and 38% of variation in riffle quality, macroinvertebrate condition and fish condition, respectively. The Land Use Change model explained similar amounts of variation in NO3‐N (R2 = 0.72), riffle quality (R2 = 0.57) and macroinvertebrate condition (R2 = 0.44) but slightly more variation in fish condition (R2 = 0.43). 4. Both models identified pathways through which landscape variables affect stream responses, including negative direct effects of latitude on macroinvertebrate and fish conditions and positive direct and indirect effects of altitude on NO3‐N, riffle quality and macroinvertebrate and fish conditions. The 2002 Land Use model showed contemporary development and agriculture had positive total effects on NO3‐N (both through direct pathways); contemporary development had negative effects on macroinvertebrate condition. The Land Use Change model showed that contemporary developed land that was forested in 1952 had no effects on NO3‐N; current developed land that was developed or agricultural in 1952 showed positive effects on NO3‐N. Forests that were agricultural in 1952 had negative effects on NO3‐N, suggesting reduced NO3‐N export with reforestation. The Land Use Change model also showed negative total effects of all types of contemporary developed land (developed, agricultural or forested in 1952) on benthic condition. Developed land that was forested in 1952 had negative effects on fish condition. Forest sites that were agricultural in 1952 had negative effects on fish and macroinvertebrate conditions, suggesting a long‐term imprint of abandoned agriculture in stream communities. 5. Our analyses (i) identified multiple indirect effects of contemporary land use on streams, (ii) showed that current land uses with different land use histories can exhibit different effects on streams and (iii) demonstrated an imprint of land use lasting >50 years. Knowledge of these indirect and long‐term effects of land use will help to conserve and restore streams.  相似文献   

13.
Streams and river networks are increasingly recognized as significant sources for the greenhouse gas nitrous oxide (N2O). N2O is a transformation product of nitrogenous compounds in soil, sediment and water. Agricultural areas are considered a particular hotspot for emissions because of the large input of nitrogen (N) fertilizers applied on arable land. However, there is little information on N2O emissions from forest streams although they constitute a major part of the total stream network globally. Here, we compiled N2O concentration data from low‐order streams (~1,000 observations from 172 stream sites) covering a large geographical gradient in Sweden from the temperate to the boreal zone and representing catchments with various degrees of agriculture and forest coverage. Our results showed that agricultural and forest streams had comparable N2O concentrations of 1.6 ± 2.1 and 1.3 ± 1.8 µg N/L, respectively (mean ± SD) despite higher total N (TN) concentrations in agricultural streams (1,520 ± 1,640 vs. 780 ± 600 µg N/L). Although clear patterns linking N2O concentrations and environmental variables were difficult to discern, the percent saturation of N2O in the streams was positively correlated with stream concentration of TN and negatively correlated with pH. We speculate that the apparent contradiction between lower TN concentration but similar N2O concentrations in forest streams than in agricultural streams is due to the low pH (<6) in forest soils and streams which affects denitrification and yields higher N2O emissions. An estimate of the N2O emission from low‐order streams at the national scale revealed that ~1.8 × 109 g N2O‐N are emitted annually in Sweden, with forest streams contributing about 80% of the total stream emission. Hence, our results provide evidence that forest streams can act as substantial N2O sources in the landscape with 800 × 109 g CO2‐eq emitted annually in Sweden, equivalent to 25% of the total N2O emissions from the Swedish agricultural sector.  相似文献   

14.
15.
Tropical montane ecosystems of the Andes are critically threatened by a rapid land‐use change which can potentially affect stream variables, aquatic communities, and ecosystem processes such as leaf litter breakdown. However, these effects have not been sufficiently investigated in the Andean region and at high altitude locations in general. Here, we studied the influence of land use (forest–pasture–urban) on stream physico‐chemical variables (e.g., water temperature, nutrient concentration, and pH), aquatic communities (macroinvertebrates and aquatic fungi) and leaf litter breakdown rates in Andean streams (southern Ecuador), and how variation in those stream physico‐chemical variables affect macroinvertebrates and fungi related to leaf litter breakdown. We found that pH, water temperature, and nutrient concentration increased along the land‐use gradient. Macroinvertebrate communities were significantly different between land uses. Shredder richness and abundance were lower in pasture than forest sites and totally absent in urban sites, and fungal richness and biomass were higher in forest sites than in pasture and urban sites. Leaf litter breakdown rates became slower as riparian land use changed from natural to anthropogenically disturbed conditions and were largely determined by pH, water temperature, phosphate concentration, fungal activity, and single species of leaf‐shredding invertebrates. Our findings provide evidence that leaf litter breakdown in Andean streams is sensitive to riparian land‐use change, with urban streams being the most affected. In addition, this study highlights the role of fungal biomass and shredder species (Phylloicus; Trichoptera and Anchytarsus; Coleoptera) on leaf litter breakdown in Andean streams and the contribution of aquatic fungi in supporting this ecosystem process when shredders are absent or present low abundance in streams affected by urbanization. Finally, we summarize important implications in terms of managing of native vegetation and riparian buffers to promote ecological integrity and functioning of tropical Andean stream ecosystems.  相似文献   

16.
Headwater streams influence the biogeochemical characteristics of large rivers and play important roles in regional and global carbon budgets. The combined effects of seasonality and land use change on the biogeochemistry of headwater streams, however, are not well understood. In this study we assessed the influence of catchment land use and seasonality on the composition of dissolved organic matter (DOM) and ecosystem metabolism in headwater streams of a Kenyan river. Fifty sites in 34 streams draining a gradient of catchment land use from 100% natural forest to 100% agriculture were sampled to determine temporal and spatial variation in DOM composition. Gross primary production (GPP) and ecosystem respiration (ER) were determined in 10 streams draining primarily forest or agricultural catchments. Absorbance and fluorescence spectrophotometry of DOM reflected notable shifts in composition along the land use gradient and with season. During the dry season, forest streams contained higher molecular weight and terrestrially derived DOM, whereas agricultural streams were dominated by autochthonous production and low molecular weight DOM. During the rainy season, aromaticity and high molecular weight DOM increased in agricultural streams, coinciding with seasonal erosion of soils and inputs of organic matter from farmlands. Most of the streams were heterotrophic. However, GPP and ER were generally greater in agricultural streams, driven by higher dissolved nutrient (mainly TDN) concentrations, light availability (open canopy) and temperature compared with forest streams. There were correlations between freshly and autochthonously produced DOM, GPP and ER during both the dry and wet seasons. This is one of the few studies to link land-use with organic carbon dynamics and DOM composition. Measures of ecosystem metabolism in these streams help to affirm the role of tropical streams and rivers as important components of the global carbon cycle and demonstrate that even semi-intensive, smallholder agriculture can have measurable effects on riverine ecosystem functioning.  相似文献   

17.
Benthic diatoms are widely used indicators of human impacts on stream ecosystems because they are very responsive to changing environmental conditions. However, little research has explicitly focused on their reliability with regards to temporal variation in assemblage structure and environmental conditions. We examined variability in diatom-environment relationships at bi-weekly, monthly, and yearly time scales from 7 reference, 7 agricultural, and 2 acid mine drainage (AMD)-impacted streams, and how nutrient and pH fluctuations may affect the interpretation of diatom metrics and the Diatom Model Affinity (DMA) index. Reference streams had less bi-weekly variability in NO3-N concentrations than non-reference streams. The % eutraphentic diatoms and DMA scores were more strongly correlated with seasonal means of NO3-N and PO4-P concentrations than with same day concentrations. Most nutrient indicator metrics had strong correlations with watershed land use. All 14 non-AMD streams experienced substantial increases in NO3-N and decreases in temperature from November to May, which were associated with high species turnover, substantial changes in community structure, reduced diversity and richness, increased relative abundances of high nutrient diatoms, and decreases in low nutrient diatoms and DMA scores. The % acidophilic diatoms and DMA scores were significantly correlated with increased pH associated with greater precipitation at AMD sites from December to April (r = ?0.77, r = 0.62, respectively; P < 0.01). Yearly, DMA scores for all reference streams were consistently in the minimally impaired category, whereas scores for non-reference streams varied among impairment categories. Reference sites serve as reliable benchmarks for diatom ecological integrity during the summer. In this region, June to October is a recommended time period for diatom sampling in monitoring programs because subsequent shifts in hydrologic regimes, nutrients, and diatom assemblages occurred, affecting all sites and masking among stream differences attributable to agricultural land uses.  相似文献   

18.
This study analyzes the relationship between physical and chemical factors and the algal communities in tropical streams in micro-watersheds where >70% of their area has different land uses, specifically, cloud mountain forest, coffee plantations, and livestock pastures. Physical, chemical, and biological variables were measured monthly in each stream over a 1-year period. The concentrations of nitrates + nitrites, total suspended solids (TSS), and silica in the streams were found to differ during the dry and rainy seasons. Coffee-plantation streams showed the highest levels of suspended solids, nitrates + nitrites, and sulfates. Based on chlorophyll a concentration, the forest and coffee-plantation streams are oligo-mesotrophic, while pasture streams are meso-eutrophic. Forest streams displayed the lowest levels of richness and algal diversity, followed by coffee-plantation streams, whereas pasture streams were the most diverse. Chlorophyll a concentration and species richness depended on land use and season. Forest coverage was positively correlated with acidophilous and oligo-eutraphentic diatom species. Coffee coverage displayed a significant positive correlation with motile species and a significant negative correlation with pollution-sensitive diatom taxa. The results show that diatom assemblages responded to micro-watershed conditions and can be used to monitor the effects of land use on streams in tropical regions.  相似文献   

19.
1. Although many studies have focussed on the effects of catchment land use on lotic systems, the importance of broad (catchment) and fine (segment/reach) scale effects on stream assemblages remain poorly understood. 2. Nine biological metrics for macrophytes (498 sites), benthic macroinvertebrates (491) and fish (478) of lowland and mountain streams in four ecoregions of France and Germany were related to catchment and riparian buffer land use using partial Redundancy Analysis and Boosted Regression Trees (BRTs). 3. Lotic fauna was better correlated (mean max., r = 0.450) than flora (r = 0.277) to both scales of land use: the strongest correlations were noted for mountain streams. BRTs revealed strong non‐linear relationships between mountain assemblage metrics and land use. Correlations increased with increasing buffer lengths, suggesting the importance of near‐stream land use on biotic assemblages. 4. Several metrics changed markedly between 10–20% (mountain ecoregions) and 40–45% (lowland) of arable land use, irrespective of the buffer size. At mountain sites with >10% catchment arable land use, metric values differed between sites with <30% and sites with >30% forest in the near‐stream riparian area. 5. These findings support the role of riparian land use in catchment management; however, differences between mountain and lowland ecoregions support the need for ecoregion‐specific management.  相似文献   

20.
Relative contributions of allochthonous inputs and autochthonous production vary depending on terrestrial land use and biome. Terrestrially derived organic matter and in-stream primary production were measured in 12 headwater streams along an agricultural land-use gradient. Streams were examined to see how carbon (C) supply shifts from forested streams receiving primarily terrestrially derived C to agricultural streams, which may rely primarily on C derived from algal productivity. We measured allochthonous input, chlorophyll a concentration, and periphyton biomass in each stream, and whole-stream metabolism in six streams. Our results suggest a threshold between moderate- and heavy-agriculture land uses in which terrestrially derived C is replaced by in-stream algal productivity as the primary C source for aquatic consumers. A shift from allochthonous to autochthonous production was not evident in all heavy-agriculture streams, and only occurred in heavy-agriculture streams not impacted by livestock grazing. We then compared our findings to rates of allochthonous input and GPP in streams with minimal human influences in multiple biomes to assess how land-use practices influence C sources to stream ecosystems. The proportion of C derived from allochthonous versus autochthonous sources to heavy-agriculture streams was most similar to grassland and desert streams, while C sources to forested, light-, and moderate-agriculture streams were more similar to deciduous and montane coniferous forest streams. We show that C source to streams is dependent on land use, terrestrial biome, and degradation of in-stream conditions. Further, we suggest that within a biome there seems to be a compensation such that total C input is nearly equal whether it is from allochthonous or autochthonous sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号