首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Maple syrup urine disease (MSUD) is a rare disorder of branched-chain amino acids (BCAA) metabolism caused by the defective function of branched-chain α-ketoacid dehydrogenase complex (BCKD). The disease causal mutations can occur either in BCKDHA, BCKDHB or DBT genes encoding respectively the E1α, E1β and E2 subunits of the complex. In this study we report the molecular characterization of 3 Tunisian patients with the classic form of MSUD. Two novel putative mutations have been identified: the alteration c.716A>G (p.Glu239Gly) in BCKDHB and a small deletion (c.1333_1336delAATG; p.Asn445X) detected in DBT gene.  相似文献   

3.
The region encompassing theMa, Mb1, Mb2, andLmp2 genes of the mouse class II major histocompatibility complex (MHC) was sequenced. Since this region contains clusters of genes required for efficient class I and class II antigen presentation, it was interesting to search for putative additional genes in the 21 kilobase gap between theMb1 andLmp2 genes. Computer predictions of coding regions and CpG islands, exon trapping experiments, and cross-species comparison with the corresponding human sequence indicate that no additional functional gene is present in that stretch. However, computer analysis revealed the possible existence of an alternative 3 exon forMb1. Except for the fact that the mouse MHC contains twoMb genes, the genomic organization of theH2-M loci was found to be almost identical to the organization of the humanHLA-DM genes. The promoter regions of theMa andMb genes also resemble classical class II promoters, containing typical S, X, and Y boxes. Like the human genes, the threeH2-M genes displayed very limited polymorphism when we compared the cDNA sequences from six haplotypes. Finally, comparison ofDMB withMb1 andMb2, both at the genomic level and in their coding regions, suggests that theMb gene was recently duplicated, probably only in certain rodents.  相似文献   

4.
The fragmented mitochondrial ribosomal RNAs (rRNAs) of the green algaeChlamydomonas eugametos andChlamydomonas reinhardtii are discontinuously encoded in subgenic modules that are scrambled in order and interspersed with protein coding and tRNA genes. The mitochondrial rRNA genes of these two algae differ, however, in both the distribution and organization of rRNA coding information within their respective genomes. The objectives of this study were (1) to examine the phylogenetic relationships between the mitochondrial rRNA gene sequences ofC. eugametos andC. reinhardtii and those of the conventional mitochondrial rRNA genes of the green alga,Prototheca wickerhamii, and land plants and (2) to attempt to deduce the evolutionary pathways that gave rise to the unusual mitochondrial rRNA gene structures in the genusChlamydomonas. Although phylogenetic analysis revealed an affiliation between the mitochondrial rRNA gene sequences of the twoChlamydomonas taxa to the exclusion of all other mitochondrial rRNA gene sequences tested, no specific affiliation was noted between theChlamydomonas sequences andP. wickerhamii or land plants. Calculations of the minimal number of transpositions required to convert hypothetical ancestral rRNA gene organizations to the arrangements observed forC. eugametos andC. reinhardtii mitochondrial rRNA genes, as well as a limited survey of the size of mitochondrial rRNAs in other members of the genus, lead us to propose that the last common ancestor ofChlamydomonas algae contained fragmented mitochondrial rRNA genes that were nearly co-linear with conventional rRNA genes.  相似文献   

5.
Single-nucleotide polymorphisms in porcine mannan-binding lectin A   总被引:3,自引:0,他引:3  
The MBL1 and MBL2 genes encode mannan-binding lectins (MBL) A and C, respectively, that are collagenous lectins (collectins) produced mainly by the liver. Several single-nucleotide polymorphisms (SNPs) in the human MBL2 gene are responsible for various innate immune dysfunctions due to abnormal structure or expression of human MBL-C. The MBL1 gene encodes MBL-A, which has bacteria-binding properties in pigs and rodents but is mutated to a pseudogene in humans and chimpanzees. In these studies, we surveyed both porcine MBL genes for SNPs that might impair disease resistance. Single-strand conformational polymorphism (SSCP) analysis of MBL cDNAs from porcine liver revealed three SNPs within the coding region of MBL1 in various breeds of pigs. One nonsynonymous SNP that substituted cysteine for glycine in the collagen-like domain of pig MBL-A was found by a multiplex PCR test in all European pig breeds examined, with allele frequencies ranging from 1.4 to 46.4%. No SNPs were identified in the coding region of porcine MBL2 but the expression of MBL-C in the liver was widely variable in comparison to the expression of MBL-A, GAPDH, PigMAP, and haptoglobin. These results indicate that some pigs have a miscoding defect in MBL-A and a possible expression defect in MBL-C, which are analogous to coding and promoter polymorphisms that affect human MBL-C.  相似文献   

6.
Class II genes of miniature swine   总被引:2,自引:0,他引:2  
Genomic clones corresponding to class II genes of theSLA c haplotype of miniature swine have been isolated and characterized. These genes have been grouped into seven non-overlapping clusters on the basis of restriction mapping. Ordering of exons within each cluster was accomplished by hybridization of Southern blots of restriction fragments with exon-specific probes. The two clusters (clusters 2 and 3) encoding theDRB andDQB genes were identified on the basis of hybridization with locus-specific 3 untranslated cDNA probes. Cluster 4 contained exons of bothDOB andDQB genes, the basis for which remains to be determined. The remaining four clusters (1, 5, 6, 7) were identified as containingDP, DR, andDO coding sequences, respectively, on the basis of sequence analysis. The porcine class II region appears very similar to that of man in number and nature of the class II genes identified and in the intron/exon organization of corresponding genes.The nucleotide sequence data reported in this paper have been submitted to the GenBank nucleotide sequence database and have been assigned the association number M29944. Address correspondence and offprint requests to: C. LeGuern.  相似文献   

7.
8.
Nucleotide sequences of the immunoglobulin constant heavy chain genes of the horse have been described for IGHM, IGHG and IGHE genes, but not for IGHA. Here, we provide the nucleotide sequence of the genomic IGHA gene of the horse (Equus caballus), including its secretion region and the transmembrane exon. The equine IGHA gene shows the typical structure of a mammalian IGHA gene, with only three exons, separated by two introns of similar size. The hinge exon is located at the 5 end of the CH2 exon and encodes a hinge region of 11 amino acids, which contains five proline residues. The coding nucleotide sequence of the secreted form of the equine IGHA gene shares around 72% identity with the human IGHA1 and IGHA2 genes, as well as the bovine, ovine, porcine and canine IGHA genes, without distinct preference for any of these species. The same species also cluster together in a phylogenetic tree of the IGHA coding regions of various mammals, whereas rodent, rabbit, marsupial and monotreme IGHA genes each build a separate cluster.The nucleotide sequences reported in this paper have been assigned the EMBL/GenBank accession numbers AY247966 and AY351982  相似文献   

9.
10.
Toll-like receptors (TLRs) recognize various microbial components and induce immune responses. Polymorphisms in TLRs may influence their recognition of pathogen-derived molecules; swine TLRs are predicted to be associated with responses to infectious diseases such as pneumonia. In this study, we searched for single nucleotide polymorphisms (SNPs) in the coding sequences of porcine TLR1, TLR2, TLR4, TLR5, and TLR6 genes in 96 pigs from 11 breeds and elucidated 21, 11, 7, 13, and 11 SNPs, respectively, which caused amino acid substitutions in the respective TLRs. Distribution of these nonsynonymous SNPs was biased; many were located in the leucine-rich repeats, particularly in TLR1. These data demonstrated that the heterogeneity of TLR genes was preserved in various porcine breeds despite intensive breeding that was carried out for livestock improvement. It suggests that the heterogeneity in TLR genes is advantageous in increasing the possibility of survival in porcine populations.Electronic SupplementaryMaterial Supplementary material is available for this article at  相似文献   

11.
12.
Rheumatoid arthritis (RA) is a chronic inflammatory disease with a heritability of 60%. Genetic contributions to RA are made by multiple genes, but only a few gene associations have yet been confirmed. By studying animal models, reduced capacity of the NADPH-oxidase (NOX) complex, caused by a single nucleotide polymorphism (SNP) in one of its components (the NCF1 gene), has been found to increase severity of arthritis. To our knowledge, however, no studies investigating the potential role played by reduced reactive oxygen species production in human RA have yet been reported. In order to examine the role played by the NOX complex in RA, we investigated the association of 51 SNPs in five genes of the NOX complex (CYBB, CYBA, NCF4, NCF2, and RAC2) in a Swedish case-control cohort consisting of 1,842 RA cases and 1,038 control individuals. Several SNPs were found to be mildly associated in men in NCF4 (rs729749, P = 0.001), NCF2 (rs789181, P = 0.02) and RAC2 (rs1476002, P = 0.05). No associations were detected in CYBA or CYBB. By stratifying for autoantibody status, we identified a strong association for rs729749 (in NCF4) in autoantibody negative disease, with the strongest association detected in rheumatoid factor negative men (CT genotype versus CC genotype: odds ratio 0.34, 95% confidence interval 0.2 to 0.6; P = 0.0001). To our knowledge, this is the first genetic association identified between RA and the NOX complex, and it supports previous findings from animal models of the importance of reactive oxygen species production capacity to the development of arthritis.  相似文献   

13.
Two new genes, LeERF1 andLeERF2, were isolated from a tomato (Lycopersicon esculentum cv. Lichun) cDNA library. Phylogenetic analysis indicated that they encoded Ethylene Responsive Element Binding Proteins (EREBPs), characterized by a conserved ERF (ethylene response factor) domain of specific binding plant cis-acting elements GCC box. Both LeERF1 and LeERF2 proteins were obtained via prokaryotic expression and purification. Electrophoretic mobility shift assay showed that LeERF1 and LeERF2 protein could bind to the promoter of the NP24 gene coding for pathogenesis-related protein osmotin precursor but not the mutant promoter where its GCC box was deleted. Polyclonal antibodies of LeERF1 and LeERF2 blocked their binding in vitro.Revisions requested 4 January 2005; Revisions received 28 January 2005  相似文献   

14.
15.
This study aims to explore the predictive noninvasive biomarker for obstructive coronary artery disease (CAD). By using the data set GSE90074, weighted gene co-expression network analysis (WGCNA), and protein–protein interactive network, construction of differentially expressed genes in peripheral blood mononuclear cells was conducted to identify the most significant gene clusters associated with obstructive CAD. Univariate and multivariate stepwise logistic regression analyses and receiver operating characteristic analysis were used to predicate the diagnostic accuracy of biomarker candidates in the detection of obstructive CAD. Furthermore, functional prediction of candidate gene biomarkers was further confirmed in ST-segment elevation myocardial infarction (STEMI) patients or stable CAD patients by using the datasets of GSE62646 and GSE59867. We found that the blue module discriminated by WGCNA contained 13 hub-genes that could be independent risk factors for obstructive CAD (P < .05). Among these 13 hub-genes, a four-gene signature including neutrophil cytosol factor 2 (NCF2, P = .025), myosin-If (MYO1F, P = .001), sphingosine-1-phosphate receptor 4 (S1PR4, P = .015), and ficolin-1 (FCN1, P = .012) alone or combined with two risk factors (male sex and hyperlipidemia) may represent potential diagnostic biomarkers in obstructive CAD. Furthermore, the messenger RNA levels of NCF2, MYO1F, S1PR4, and FCN1 were higher in STEMI patients than that in stable CAD patients, although S1PR4 showed no statistical difference (P > .05). This four-gene signature could also act as a prognostic biomarker to discriminate STEMI patients from stable CAD patients. These findings suggest a four-gene signature (NCF2, MYO1F, S1PR4, and FCN1) alone or combined with two risk factors (male sex and hyperlipidemia) as a promising prognostic biomarker in the diagnosis of STEMI. Well-designed cohort studies should be implemented to warrant the diagnostic value of these genes in clinical purpose.  相似文献   

16.
Globin genes from theCaenorhabditis speciesbriggsae andremanei were identified and compared with a previously describedC. elegans globin gene. The encoded globins share between 86% and 93% amino acid identity, with most of the changes in or just before the putative B helix.C. remanei was found to have two globin alleles,Crg1-1 andCrgl-2. The coding sequence for each is interrupted by a single intron in the same position. The exons of the two genes are only 1 % divergent at the nucleotide level and encode identical polypeptides. In contrast, intron sequence divergence is 16% and numerous insertions and deletions have significantly altered the size and content of both introns. Genetic crosses show thatCrg1-1 andCrgl-2 segregate as alleles. Homozygous lines for each allele were constructed and northern analysis confirmed the expression of both alleles. These data reveal an unusual situation wherein two alleles encoding identical proteins have diverged much more rapidly in their introns than the silent sites of their coding sequences, suggesting multiple gene conversion events. Correspondence to: D. Goldberg  相似文献   

17.
TheGPX2gene codes for GSHPx-GI, a glutathione peroxidase whose mRNA is readily detectable in the gastrointestinal tract. AlthoughGPX2is a single gene in humans, there are two genes in the mouse genome with homology toGPX2.By analyzing a panel of mouse interspecies DNA from the Jackson Laboratory's backcross resource, we have chromosomally mapped these two genes. One was mapped to the central region of mouse chromosome 12 betweenD12Mit4andD12Mit5,nearfosandTgfb3.This region is homologous to human 14q24.1, where humanGPX2has been mapped, and most likely represents the functional mouseGpx2gene. The otherGpx2-like gene was mapped to mouse chromosome 7 betweenPcsk3andHbb.We have isolated the latter gene from a P1 phage library. Its pseudogene nature is revealed by the sequence analysis: (a) it is intronless; (b) it has a single nucleotide deletion in the coding region; and (c) it has a poly(A) tail at its 3′-untranslated region.  相似文献   

18.
Two new proteinases secreted byCryphonectria parasitica, namely EapB and EapC, have been purified. The corresponding structural genes were isolated by screening a cosmid library, and sequenced. Comparison of genomic and cDNA sequences revealed that theeapB andeapC genes contain three and two introns, respectively. The products of theeapB andeapC genes as deduced from the nucleotide sequences, are 268 and 269 residues long, respectively. N-terminal amino acid sequencing data indicates that EapC is synthesized as a zymogen, which yields a mature 206-amino acid enzyme after cleavage of the prepro sequence. Similarly, sequence alignment studies suggest that EapB is secreted as a 203-residue form which shares extensive similarities not only with EapC but also with two other acid fungal proteinases. However, they display distinct structural features; for example, no cysteine residue is found in EapC. TheeapC gene was mutated using a two-step gene replacement strategy which allowed the specific introduction of several stop codons at the beginning of theeapC coding sequence in an endothiapepsin-deficient (EapA+)C. parasitica strain. Although the resulting strain did not secrete EapC, it still exhibited residual extracellular proteolytic activity, which could be due to EapB.  相似文献   

19.
Summary Approximately 30–40% ofDrosophila virilis DNA complementary to clonedDrosophila histone genes is reduced to 3.4-kilobase-pair (kbp) segments by Bgl I or Bgl II digestion. The core histone genes of a 3.4-kbp Bgl II segment cloned in the plasmid pDv3/3.4 have the same order as theD. melanogaster core histone genes in the plasmid cDm500: . Nonetheless, pDv3/3.4 and cDm500 have different histone gene configurations: In pDv3/3.4, the region between the H2B and H3 genes contains 0.35 kbp and cannot encode histone H1; in cDm500, the region contains 2.0 kbp and encodes histone H1. The lack of an H1 gene between the H2B and H3 genes in 30–40% ofD. virilis histone gene clusters suggests that changes in histone gene arrays have occurred during the evolution ofDrosophila. The ancestors of modernDrosophila may have possessed multiple varieties of histone gene clusters, which were subsequently lost differentially in thevirilis andmelanogaster lineages. Alternatively, they may have possessed a single variety, which was rearranged during evolution. The H1 genes ofD. virilis andD. melanogaster did not cross-hybridize in vitro under conditions that maintain stable duplexes between DNAs that are 75% homologous. Consequently,D. virilis H1 genes could not be visualized by hybridization to an H1-specific probe and thus remain unidentified. Our observations suggest that the coding segments in the H1 genes ofD. virilis andD. melanogaster are >25% divergent. Our estimate of sequence divergence in the H1 genes ofD. virilis andD. melanogaster seems high until one considers that the coding sequences of cloned H1 genes from the closely related speciesD. melanogaster andD. simulans are 5% divergent.  相似文献   

20.
The Argonaute proteins are recently identified and evolutionarily conserved family with two subfamilies Ago and Piwi, which play important roles in small RNA pathways. Most species have eight Argonaute members in their genomes, ranging from 1 to 27. Here we report identification of six Argonaute genes in pig, four members of the Ago subfamily (Ago1, Ago2, Ago3 and Ago4) and two members of the Piwi subfamily (Piwil1 and Piwil2), which were predicted to encode proteins of 857, 860, 860, 861, 861 and 985 amino acids, respectively. Phylogenetic analysis showed that the porcine Ago and Piwi genes were clustered into relevant branch of mammalian Argonaute members. The porcine Ago4- Ago1-Ago3 genes are linked together at the p12 of the chromosome 6, while Ago2 is located at the p15 of the chromosome 4. The porcine Piwil1 and Piwil2 are mapped together onto the chromosome 14, at the q14 and q11 respectively. Comparatively mapping of the Argonaute members on chromosomes showed that linkage group of the Ago4-Ago1-Ago3 and several neighborhood genes is evolutionarily conserved from chicken to mammals. The genes Piwil1 and Piwil2 are separated onto different chromosomes from fish to mammals, with exception to this tendency in both pig and stickleback, indicating an opposite tendency of recombination together or non-disjunction of these two genes during speciation. Further expression analysis showed an ubiquitous expression pattern of Ago members, oppositely a restricted expression pattern in gonads of the Piwi members, suggesting distinct potential roles of the porcine Argonaute genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号