首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Receptor-mediated endocytosis can be exploited to achieve efficient cell-specific gene delivery. Our laboratory has used two approaches for targeted gene delivery. One uses polycation as a carrier for plasmid DNA and the other uses peptide nucleic acid (PNA) as a carrier. Targeted gene delivery using polycation carriers has been widely utilized with some success. This approach mainly suffers from large particle size and non-specific interaction with blood components. These drawbacks have limited use of this type of vector forin vivo applications. Using PNA as a carrier, on the other hand, allows for smaller particle size and less non-specific interactions. The stability of this vector in the circulation may be a limiting factor. In addition, both types of vector lack mechanisms for endosome escape and nuclear transport. In this chapter, current developments and uses for targeted gene delivery of each approach are reviewed.  相似文献   

2.
Receptor-mediated endocytosis can be exploited to achieve efficient cell-specific gene delivery. Our laboratory has used two approaches for targeted gene delivery. One uses polycation as a carrier for plasmid DNA and the other uses peptide nucleic acid (PNA) as a carrier. Targeted gene delivery using polycation carriers has been widely utilized with some success. This approach mainly suffers from large particle size and non-specific interaction with blood components. These drawbacks have limited use of this type of vector for in vivo applications. Using PNA as a carrier, on the other hand, allows for smaller particle size and less non-specific interactions. The stability of this vector in the circulation may be a limiting factor. In addition, both types of vector lack mechanisms for endosome escape and nuclear transport. In this chapter, current developments and uses for targeted gene delivery of each approach are reviewed.  相似文献   

3.
Receptor-mediated endocytosis can be exploited to achieve efficient cell-specific gene delivery. Our laboratory has used two approaches for targeted gene delivery. One uses polycation as a carrier for plasmid DNA and the other uses peptide nucleic acid (PNA) as a carrier. Targeted gene delivery using polycation carriers has been widely utilized with some success. This approach mainly suffers from large particle size and non-specific interaction with blood components. These drawbacks have limited use of this type of vector for in vivoapplications. Using PNA as a carrier, on the other hand, allows for smaller particle size and less non-specific interactions. The stability of this vector in the circulation may be a limiting factor. In addition, both types of vectorlack mechanisms for endosome escape and nuclear transport. In this chapter, current developments and uses for targeted gene delivery of each approach are reviewed.  相似文献   

4.
The HERV‐W family of human endogenous retroviruses represents a group of numerous sequences that show close similarity in genetic composition. It has been documented that some members of HERV‐W–derived expression products are supposed to play significant role in humans' pathology, such as multiple sclerosis or schizophrenia. Other members of the family are necessary to orchestrate physiological processes (eg, ERVWE1 coding syncytin‐1 that is engaged in syncytiotrophoblast formation). Therefore, an assay that would allow the recognition of particular form of HERV‐W members is highly desirable. A peptide nucleic acid (PNA)–mediated technique for the discrimination between multiple sclerosis‐associated retrovirus and ERVWE1 sequence has been developed. The assay uses a PNA probe that, being fully complementary to the ERVWE1 but not to multiple sclerosis‐associated retrovirus (MSRV) template, shows high selective potential. Single‐stranded DNA binding protein facilitates the PNA‐mediated, sequence‐specific formation of strand invasion complex and, consequently, local DNA unwinding. The target DNA may be then excluded from further analysis in any downstream process such as single‐stranded DNA‐specific exonuclease action. Finally, the reaction conditions have been optimized, and several PNA probes that are targeted toward distinct loci along whole HERV‐W env sequences have been evaluated. We believe that PNA/single‐stranded DNA binding protein–based application has the potential to selectively discriminate particular HERV‐W molecules as they are at least suspected to play pathogenic role in a broad range of medical conditions, from psycho‐neurologic disorders (multiple sclerosis and schizophrenia) and cancers (breast cancer) to that of an auto‐immunologic background (psoriasis and lupus erythematosus).  相似文献   

5.
Use of the polymerase chain reaction (PCR) to amplify variable numbers of tandem repeat (VNTR) loci has become widely used in genetic typing. Unfortunately, preferential amplification of small allelic products relative to large allelic products may result in incorrect or ambiguous typing in a heterozygous sample. The mechanism for preferential amplification has not been elucidated. Recently, PNA oligomers (peptide nucleic acids) have been used to detect single base mutations through PCR clamping. PNA is a DNA mimic that exhibits several unique hybridization characteristics. In this report we present a new application of PNA which exploits its unique properties to provide enhanced amplification. Rather than clamping the PCR, PNA is used to block the template making it unavailable for interstrand and intrastrand interactions while allowing polymerase to displace the PNA molecules and extend the primer to completion. Preferential amplification is reduced and overall efficiency is enhanced.  相似文献   

6.
In view of a better understanding of chiral selection of oligonucleotides, we have studied the hybridization of D- and L-CNA (cyclohexane nucleic acids) and D- and L-DNA, with chiral D-beta-homo-DNA and achiral PNA (peptide nucleic acids). PNA hybridizes as well with D-DNA, L-DNA as with D-beta-homo-DNA. The structure of the PNA x D-beta-homo-DNA complex is different from the PNA x DNA duplexes. D-CNA prefers D-DNA as hybridization partner, while L-CNA prefers D-beta-homo-DNA as hybridization partner. The conformation of the enantiomeric oligonucleotides D-CNA and L-CNA in the supramolecular complex with D-DNA and D-beta-homo-DNA, respectively, is different. These data may contribute to the confirmation of a hypothesis of the existence of achiral informative polymers as RNA predecessor, and to the understanding of homochirality of nucleic acids.  相似文献   

7.
All aspects of RNA metabolism are regulated by RNA-binding proteins (RBPs) that directly associate with the RNA. Some aspects of RNA biology such as RNA abundance can be readily assessed using standard hybridization technologies. However, identification of RBPs that specifically associate with selected RNAs has been more difficult, particularly when attempting to assess this in live cells. The peptide nucleic acid (PNA)-assisted identification of RBPs (PAIR) technology has recently been developed to overcome this issue. The PAIR technology uses a cell membrane-penetrating peptide (CPP) to efficiently deliver into the cell its linked PNA oligomer that complements the target mRNA sequence. The PNA will then anneal to its target mRNA in the living cell, and then covalently couple to the mRNA-RBP complexes subsequent to an ultraviolet (UV) cross-linking step. The resulting PNA-RNA-RBP complex can be isolated using sense oligonucleotide magnetic beads, and the RBPs can then be identified by mass spectrometry (MS). This procedure can usually be completed within 3 d. The use of the PAIR procedure promises to provide insight into the dynamics of RNA processing, transport, degradation and translation in live cells.  相似文献   

8.
Sequence-selective recognition of double-stranded (ds) DNA by homopyrimidine peptide nucleic acid (PNA) oligomers can occur by major groove triplex binding or by helix invasion via triplex P-loop formation. We have compared the binding of a decamer, a dodecamer and a pentadecamer thymine–cytosine homopyrimidine PNA oligomer to a sequence complementary homopurine target in duplex DNA using gel-shift and chemical probing analyses. We find that all three PNAs form stable triplex invasion complexes, and also conventional triplexes with the dsDNA target. Triplexes form with much faster kinetics than invasion complexes and prevail at lower PNA concentrations and at shorter incubation times. Furthermore, increasing the ionic strength strongly favour triplex formation over invasion as the latter is severely inhibited by cations. Whereas a single triplex invasion complex is formed with the decameric PNA, two structurally different target-specific invasion complexes were characterized for the dodecameric PNA and more than five for the pentadecameric PNA. Finally, it is shown that isolated triplex complexes can be converted to specific invasion complexes without dissociation of the Hoogsteen base-paired triplex PNA. These result demonstrate a clear example of a ‘triplex first’ mechanism for PNA helix invasion.  相似文献   

9.
Several exciting new developments in the applications of the DNA mimic peptide nucleic acid (PNA) have been published recently. A possible breakthrough may have come in efforts to develop PNA into gene therapeutic drugs. In eukaryotic systems, antisense activity of PNAs (as peptide conjugates) has been reported in nerve cells and even in rats upon injection into the brain, and antisense activity has also been demonstrated in Escherichia coli. PNA hybridization technology has developed rapidly within in situ hybridization, and exciting new methods based on MALDI-TOF detection have also been presented.  相似文献   

10.
A novel approach to the introduction of chirality into peptide nucleic acid (PNA) by replacement of the methylene carbonyl linker by an alpha-amino acid derived moiety is described. A monomer compatible with Fmoc-based oligomerization chemistry possessing an L-serine derived linker has been synthesized and incorporated into PNA oligomers. A single, central substitution in a hexathymine PNA strongly destabilized triple helix formation whereas a central substitution in a mixed sequence is much better tolerated. We have investigated the influence of this substitution on the selectivity for strand composition (DNA versus RNA complement) and strand orientation (antiparallel versus parallel) in the context of duplex formation. A PNA 11-mer with a single substitution demonstrates a preference for an antiparallel RNA complement, as judged by thermal denaturation analysis of the complexes.  相似文献   

11.
The potential use of peptide nucleic acid (PNA) as a sequence-specific inhibitor of RNA translation is investigated in this report. Three different regions of the PML/RARalpha oncogene, including two AUG potential start codons, were studied as targets of translation inhibition by antisense PNA in a cell-free system. A PNA targeted to the second AUG start codon, which was shown previously to be able to suppress in vitro translation from that site completely, was used alone or in combination with another PNA directed to the first AUG, and a third PNA within the 5'-untranslated region (5'-UTR) of mRNA. When used alone, no PNA was able to completely block the synthesis of the PML/RARalpha protein. The 5'-UTR PNA was the most potent translation inhibitor when used as single agent. However, a near complete (>/=90%) specific inhibition of the PML/RARalpha gene was obtained when the three PNAs were used in combination, thus obtaining an additive antisense effect.  相似文献   

12.
Gupta P  Muse O  Rozners E 《Biochemistry》2012,51(1):63-73
Double-helical RNA has become an attractive target for molecular recognition because many noncoding RNAs play important roles in the control of gene expression. Recently, we discovered that short peptide nucleic acids (PNA) bind strongly and sequence selectively to a homopurine tract of double-helical RNA via formation of a triple helix. Herein, we tested if the molecular recognition of RNA could be enhanced by α-guanidine modification of PNA. Our study was motivated by the discovery of Ly and co-workers that the guanidine modification greatly enhances the cellular delivery of PNA. Isothermal titration calorimetry showed that the guanidine-modified PNA (GPNA) had reduced affinity and sequence selectivity for triple-helical recognition of RNA. The data suggested that in contrast to unmodified PNA, which formed a 1:1 PNA-RNA triple helix, GPNA preferred a 2:1 GPNA-RNA triplex invasion complex. Nevertheless, promising results were obtained for recognition of biologically relevant double-helical RNA. Consistent with enhanced strand invasion ability, GPNA derived from d-arginine recognized the transactivation response element of HIV-1 with high affinity and sequence selectivity, presumably via Watson-Crick duplex formation. On the other hand, strong and sequence selective triple helices were formed by unmodified and nucelobase-modified PNA and the purine-rich strand of the bacterial A-site. These results suggest that appropriate chemical modifications of PNA may enhance molecular recognition of complex noncoding RNAs.  相似文献   

13.
The effects of a wide range of DNA binding drugs on peptide nucleic acid (PNA) binding to double-stranded DNA by strand displacement have been investigated using a gel retardation assay. The bis-PNA [H-(Lys)-TTJTTJTTTT-(eg)(3)-TTTTCTTCTT-Lys-NH(2)] was used together with a 248 bp DNA fragment containing an appropriate target for the PNA. Most of the ligands that were studied, including DNA minor groove binders as well as intercalators and bis-intercalators, either have no effect or strongly inhibit PNA binding to DNA. By contrast, quinoxaline antibiotics facilitate PNA-DNA complex formation. The "PNA-helper" effect of echinomycin was studied in more detail using time and temperature dependence experiments to elucidate the mechanism. PNA binding to DNA follows pseudo-first-order kinetics, but the initial rate of binding is accelerated more than 10-fold in the presence of 10 microM echinomycin. The activation energy for PNA binding to dsDNA is lowered 2-fold by the antibiotic (45 vs 90 kJ/mol in the control). The reasons why quinoxalines promote the binding of PNA to DNA are not entirely clear but may well include distortions (opening) of the double helix that facilitate PNA invasion. This study establishes that the efficacy of DNA-targeted PNA antigene molecules could potentially be enhanced by judiciously adding certain DNA-interactive ligands.  相似文献   

14.
Single base pair mutation analysis by PNA directed PCR clamping.   总被引:14,自引:5,他引:9       下载免费PDF全文
A novel method that allows direct analysis of single base mutation by the polymerase chain reaction (PCR) is described. The method utilizes the finding that PNAs (peptide nucleic acids) recognize and bind to their complementary nucleic acid sequences with higher thermal stability and specificity than the corresponding deoxyribooligonucleotides and that they cannot function as primers for DNA polymerases. We show that a PNA/DNA complex can effectively block the formation of a PCR product when the PNA is targeted against one of the PCR primer sites. Furthermore, we demonstrate that this blockage allows selective amplification/suppression of target sequences that differ by only one base pair. Finally we show that PNAs can be designed in such a way that blockage can be accomplished when the PNA target sequence is located between the PCR primers.  相似文献   

15.
16.
The potential pharmacologic benefits of using peptide nucleic acid (PNA) as an antisense agent are tempered by its incapacity to activate RNase H. The mixed backbone oligonucleotide (ON) (or gapmer) approach, in which a short internal window of RNAse H-competent residues is embedded within an RNase H-incompetent ON has not been applied previously to PNA because PNA and DNA hybridize to RNA with very different helical structures, creating structural perturbations at the two PNA-DNA junctions. It is demonstrated here for the first time that a short internal phosphodiester window within a PNA is sufficient to evoke the RNase H-dependent cleavage of a targeted RNA and to abrogate translation elongation in a well-characterized in vitro assay.  相似文献   

17.
This work describes the first automated solid-phase synthesis of metal derivatives of peptide nucleic acid (PNA) oligomers and their interaction with DNA and PNA. PNA constitutes a relatively young and very promising class of DNA analogues with excellent DNA and RNA binding properties. However, PNA lacks a suitable handle that would permit its sensitive detection on its own as well as when hybridized with complementary oligonucleotides. Metal complexes, on the other hand, offer high potential as markers for biomolecules. In this paper, we describe the synthesis of PNA heptamers (tggatcg-gly, where gly is a C-terminal glycine carboxylic acid amide) with two covalently attached metal complexes at the PNA N-terminus, namely a ferrocene carboxylic acid derivative and a tris(bipyridine)ruthenium(II) derivative. We show how all synthesis steps may be carried out with high yield on a DNA synthesizer, including attachment of the metal complexes. The conjugates were characterized by HPLC (>90% purity) and ESI-MS. Binding studies of the purified Ru-PNA heptamer to complementary DNA and PNA and comparison to the isosequential metal-free acetyl PNA heptamer proves that the attached metal complex has an influence on the stability (UV-T(m)) and structure (CD spectroscopy) of the conjugates, possibly by disruption of the nearby A:T base pair.  相似文献   

18.
We have demonstrated that polyamide nucleic acids complementary to the transactivation response (TAR) element of HIV-1 LTR inhibit HIV-1 production when transfected in HIV-1 infected cells. We have further shown that anti-TAR PNA (PNA(TAR)) conjugated with cell-penetrating peptide (CPP) is rapidly taken up by cells and exhibits strong antiviral and anti-HIV-1 virucidal activities. Here, we pharmacokinetically analyzed (125)I-labeled PNA(TAR) conjugated with two CPPs: a 16-mer penetratin derived from antennapedia and a 13-mer Tat peptide derived from HIV-1 Tat. We administered the (125)I-labeled PNA(TAR)-CPP conjugates to male Balb/C mice through intraperitoneal or gavage routes. The naked (125)I-labeled PNA(TAR) was used as a control. Following a single administration of the labeled compounds, their distribution and retention in various organs were monitored at various time points. Regardless of the administration route, a significant accumulation of each PNA(TAR)-CPP conjugate was found in different mouse organs and tissues. The clearance profile of the accumulated radioactivity from different organs displayed a biphasic exponential pathway whereby part of the radioactivity cleared rapidly, but a significant portion of it was slowly released over a prolonged period. The kinetics of clearance of individual PNA(TAR)-CPP conjugates slightly varied in different organs, while the overall biphasic clearance pattern remained unaltered regardless of the administration route. Surprisingly, unconjugated naked PNA(TAR) displayed a similar distribution and clearance profile in most organs studied although extent of its uptake was lower than the PNA(TAR)-CPP conjugates.  相似文献   

19.
The ability of a peptide to react specifically with the functional binding site of a complementary antibody is known as its antigenic reactivity or antigenicity. Our understanding of peptide antigenicity has improved considerably in recent years mainly through the X-ray crystallographic analysis of peptide-monoclonal antibody complexes. This knowledge is obtained along reductionist lines by turning the biological question of antigen recognition into the purely chemical phenomenon of protein-peptide interactions described in terms of atomic forces and non-covalent bonds. This makes it possible to improve the degree of steric complementarity between a peptide and a single monoclonal antibody and thus to improve the peptide's antigenicity following structure-based rational design principles.The situation is quite different with immunogenicity which is the ability of the peptide to induce an immune response in a competent host. Whereas antigenicity can be reduced to the level of chemistry, such a reduction is not achievable in the case of immunogenicity which depends on many complex interactions with various elements of the host immune system. These cellular and regulatory mechanisms cannot be controlled by adjusting the structure of the peptide in a predetermined manner. For this reason, it is not possible to develop a synthetic peptide vaccine using molecular design principles.  相似文献   

20.
It is proposed that the primordial genetic material could have been peptide nucleic aicds,i.e., DNA analogues having a peptide backbone. PNA momomers based on the amino acid, , -diaminobutyric acid or ornithine are suggested as compounds that could have been formed in the prebiotic soup. Finally, the possibility of a PNA/RNA world is presented, in which PNA constitutes the stable genetic material, while RNA which may be polymerized using the PNA as template accounts for enzymatic activities including PNA replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号