首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
RNA duplexes containing the modified base 2-amino-adenine in place of adenine are stabilized through the formation of three hydrogen bonds in 2-amino A.U base pairs. Antisense 2'-O-alkyloligoribonucleotide probes incorporating 2-aminoadenosine are thus able to efficiently affinity select RNP particles which are otherwise inaccessible. This has allowed the efficient and specific depletion of U5 snRNP from HeLa cell nuclear splicing extracts. U5 snRNP is shown to be essential for spliceosome assembly and for both steps of pre-mRNA splicing. The absence of U5 snRNP prevents the stable association of U4/U6 but not U1 and U2 snRNPs with pre-mRNA.  相似文献   

2.
3.
The spliceosome is a highly dynamic macromolecular ribonucleoprotein (RNP) machine that catalyzes pre-mRNA splicing by assembling U1, U2, U4, U5, and U6 small nuclear RNPs (snRNPs). To process large numbers of introns with a limited number of snRNPs, synthesis and recycling of snRNPs must be maintained within an appropriate range to avoid their shortage. However, the mechanism that maintains cellular snRNP levels is unknown. Molecules that modulate cellular snRNP levels may help to define this mechanism but are not available. Therefore, the goal of the current study was to develop a reporter for snRNP levels using split luciferase based on proteomic analysis of snRNPs. We constructed an expression library of a luciferase fragment fused to core components of U5 snRNP and used it to isolate pre-mRNA processing factor 6 (PRPF6) and small nuclear ribonucleoprotein 40 kDa (U5-40K) that specifically reconstitute luciferase activity in the U5 snRNP complex. Here we show that this reporter detects the effects of small molecules on the levels of the U5 snRNP reporter protein complex. Our approach provides an alternative assay to discover small molecules targeting a macromolecular complex when the structure of the complex is not precisely identified.  相似文献   

4.
5.
D L Black  B Chabot  J A Steitz 《Cell》1985,42(3):737-750
Two different experimental approaches have provided evidence that both U2 and U1 snRNPs function in pre-mRNA splicing. When the U2 snRNPs in a nuclear extract are selectively degraded using ribonuclease H and either of two deoxyoligonucleotides complementary to U2 RNA, splicing activity is abolished. Mixing an extract in which U2 has been degraded with one in which U1 has been degraded recovers activity. Use of anti-(U2)RNP autoantibodies demonstrates that U2 snRNPs associate with the precursor RNA during in vitro splicing. At 60 min, but not at 0 min, into the reaction intron fragments that include the branch-point sequence are immunoprecipitated by anti-(U2)RNP. At all times, U1 snRNPs bind the 5' splice site of the pre-mRNA. Possible interactions of the U2 snRNP with the U1 snRNP and with the pre-mRNA during splicing are considered.  相似文献   

6.
HeLa cell nuclear splicing extracts have been prepared that are specifically and efficiently depleted of U1, U2, or U4/U6 snRNPs by antisense affinity chromatography using biotinylated 2'-OMe RNA oligonucleotides. Removal of each snRNP particle prevents pre-mRNA splicing but arrests spliceosome formation at different stages of assembly. Mixing extracts depleted for different snRNP particles restores formation of functional splicing complexes. Specific binding of factors to the 3' splice site region is still detected in snRNP-depleted extracts. Depletion of U1 snRNP impairs stable binding of U2 snRNP to the pre-mRNA branch site. This role of U1 snRNP in promoting stable preslicing complex formation is independent of the U1 snRNA-5' splice site interaction.  相似文献   

7.
8.
Requirements for U2 snRNP addition to yeast pre-mRNA.   总被引:8,自引:2,他引:6       下载免费PDF全文
The in vitro spliceosome assembly pathway is conserved between yeast and mammals as U1 and U2 snRNPs associate with the pre-mRNA prior to U5 and U4/U6 snRNPs. In yeast, U1 snRNP-pre-mRNA complexes are the first splicing complexes visualized on native gels, and association with U1 snRNP apparently commits pre-mRNA to the spliceosome assembly pathway. The current study addresses U2 snRNP addition to commitment complexes. We show that commitment complex formation is relatively slow and does not require ATP, whereas U2 snRNP adds to the U1 snRNP complexes in a reaction that is relatively fast and requires ATP or hydrolyzable ATP analogs. In vitro spliceosome assembly was assayed in extracts derived from strains containing several U1 sRNA mutations. The results were consistent with a critical role for U1 snRNP in early complex formation. A mutation that disrupts the base-pairing between the 5' end of U1 snRNA and the 5' splice site allows some U2 snRNP addition to bypass the ATP requirement, suggesting that ATP may be used to destabilize certain U1 snRNP:pre-mRNA interactions to allow subsequent U2 snRNP addition.  相似文献   

9.
To understand how the U5 small nuclear ribonucleoprotein (snRNP) interacts with other spliceosome components, its structure and binding to the U4/U6 snRNP were analyzed. The interaction of the U5 snRNP with the U4/U6 snRNP was studied by separating the snRNPs in HeLa cell nuclear extracts on glycerol gradients. A complex running at 25S and containing U4, U5, and U6 but not U1 or U2 snRNAs was identified. In contrast to results with native gel electrophoresis to separate snRNPs, this U4/U5/U6 snRNP complex requires ATP to assemble from the individual snRNPs. The structure of the U5 RNA within the U5 snRNP and the U4/5/6 snRNP complexes was then compared. Oligonucleotide-targeted RNase H digestion identified one RNA sequence in the U5 snRNP capable of base pairing to other nucleic acid sequences. Chemical modification experiments identified this sequence as well as two other U5 RNA sequences as accessible to modification within the U5 RNP. One of these regions is a large loop in the U5 RNA secondary structure whose sequence is conserved from Saccharomyces cerevisiae to humans. Interestingly, no differences in modification of free U5 snRNP as compared to U5 in the U4/U5/U6 snRNP complex were observed, suggesting that recognition of specific RNA sequences in the U5 snRNP is not required for U4/U5/U6 snRNP assembly.  相似文献   

10.
11.
U2 snRNA, a key player in nuclear pre-mRNA splicing, contains a 5'-terminal m3G cap and many internal modifications. The latter were shown in vertebrates to be generally required for U2 function in splicing, but precisely which residues are essential and their role in snRNP and/or spliceosome assembly is presently not clear. Here, we investigated the roles of individual modified nucleotides of HeLa U2 snRNA in pre-mRNA splicing, using a two-step in vitro reconstitution/complementation assay. We show that the three pseudouridines and five 2'O-methyl groups within the first 20 nucleotides of U2 snRNA, but not the m3G cap, are required for efficient pre-mRNA splicing. Individual pseudouridines were not essential, but had cumulative effects on U2 function. In contrast, four of five 2'O-methylations (at positions 1, 2, 12, and 19) were individually required for splicing. The in vitro assembly of 17S U2 snRNPs was not dependent on the presence of modified U2 residues. However, individual internal modifications were required for the formation of the ATP-independent early spliceosomal E complex. Our data strongly suggest that modifications within the first 20 nucleotides of U2 play an important role in facilitating the interaction of U2 with U1 snRNP and/or other factors within the E complex.  相似文献   

12.
Snu114 is a U5 snRNP protein essential for pre-mRNA splicing. Based on its homology with the ribosomal translocase EF-G, it is thought that GTP hydrolysis by Snu114 induces conformational rearrangements in the spliceosome. We recently identified allele-specific genetic interactions between SNU114 and genes encoding three other U5 snRNP components, Prp8 and two RNA-dependent ATPases, Prp28 and Brr2, required for destabilization of U1 and U4 snRNPs prior to catalysis. To shed more light onto the function of Snu114, we have now directly analyzed snRNP and spliceosome assembly in SNU114 mutant extracts. The Snu114-60 C-terminal truncation mutant, which is synthetically lethal with the ATPase mutants prp28-1 and brr2-1, assembles spliceosomes but subsequently blocks U4 snRNP release. Conversely, mutants in the GTPase domain fail to assemble U5 snRNPs. These mutations prevent the interaction of Snu114 with Prp8 as well as with U5 snRNA. Since Prp8 is thought to regulate the activity of the DEAD-box ATPases, this strategy of snRNP assembly could ensure that Prp8 activity is itself regulated by a GTP-dependent mechanism.  相似文献   

13.
In eukaryotes splicing of pre-mRNAs is mediated by the spliceosome, a dynamic complex of small nuclear ribonucleoprotein particles (snRNPs) that associate transiently during spliceosome assembly and the splicing reaction. We have purified snRNPs from nuclear extracts of Drosophila cells by affinity chromatography with an antibody specific for the trimethylguanosine (m3G) cap structure of snRNAs U1-U5. The polypeptide components of Drosophila snRNPs have been characterized and shown to consist of a number of proteins shared by all the snRNPs, and some proteins which appear to be specific to individual snRNP particles. On the basis of their apparent molecular weight and antigenicity many of these common and particle specific Drosophila snRNP proteins are remarkably conserved between Drosophila and human spliceosomes. By probing western blots of the Drosophila snRNP polypeptides with a number of antisera raised against human snRNP proteins, Drosophila polypeptides equivalent to many of the HeLa snRNP-common proteins have been identified, as well as candidates for a number of U1, U2 and U5-specific proteins.  相似文献   

14.
15.
The pre-mRNA splicing pathway is highly conserved from yeast (S. cerevisiae) to mammals. Of the four snRNPs involved in splicing three (U1, U2 and U4/U6) have been shown to be essential for in vitro splicing. To examine the remaining snRNP, we utilized our previously described genetic procedures (Seraphin and Rosbash, 1989) to prepare yeast extracts depleted of U5 snRNP. The results show that U5 snRNP is necessary for both steps of pre- mRNA splicing and for proper spliceosome assembly, i.e., addition of the U4/U5/U6 triple snRNP. The prior steps of U1 and U2 snRNP addition occur normally in the absence of U5 snRNP.  相似文献   

16.
S M Berget  B L Robberson 《Cell》1986,46(5):691-696
The requirement for individual U RNAs in splicing and polyadenylation was investigated using oligonucleotide-directed cleavage of snRNAs in in vitro processing extracts. Cleavage of U1, U2, or U4 RNA inhibited splicing but not polyadenylation of short precursor RNAs. Thus each snRNA and the snRNP in which it is assembled participates in the splicing reaction. Splicing activity was recovered when extracts containing cleaved U RNAs were mixed in pairwise combinations, indicating that U1, U2, and U4/U6 snRNPs independently interact with the assembling spliceosome. The involvement of multiple snRNPs in the splicing of simple precursor RNAs suggests that the spliceosome is a large complex assembly consisting of multiple snRNPs whose activity is dependent on the structural integrity of the individual U RNAs.  相似文献   

17.
We have isolated and microsequenced Snu17p, a novel yeast protein with a predicted molecular mass of 17 kDa that contains an RNA recognition motif. We demonstrate that Snu17p binds specifically to the U2 small nuclear ribonucleoprotein (snRNP) and that it is part of the spliceosome, since the pre-mRNA and the lariat-exon 2 are specifically coprecipitated with Snu17p. Although the SNU17 gene is not essential, its knockout leads to a slow-growth phenotype and to a pre-mRNA splicing defect in vivo. In addition, the first step of splicing is dramatically decreased in extracts prepared from the snu17 deletion (snu17Delta) mutant. This defect is efficiently reversed by the addition of recombinant Snu17p. To investigate the step of spliceosome assembly at which Snu17p acts, we have used nondenaturing gel electrophoresis. In Snu17p-deficient extracts, the spliceosome runs as a single slowly migrating complex. In wild-type extracts, usually at least two distinct complexes are observed: the prespliceosome, or B complex, containing the U2 but not the U1 snRNP, and the catalytically active spliceosome, or A complex, containing the U2, U6, and U5 snRNPs. Northern blot analysis and affinity purification of the snu17Delta spliceosome showed that it contains the U1, U2, U6, U5, and U4 snRNPs. The unexpected stabilization of the U1 snRNP and the lack of dissociation of the U4 snRNP suggest that loss of Snu17p inhibits the progression of spliceosome assembly prior to U1 snRNP release and after [U4/U6.U5] tri-snRNP addition.  相似文献   

18.
The U1, U2, U4/U6, and U5 small nuclear ribonucleoproteins (snRNPs) are components of the spliceosome, which catalyzes pre-mRNA splicing. One of the largest and the most highly conserved proteins in the spliceosome is Prp8p, a component of the U5 snRNP. Despite its size and conservation, very few motifs have been identified that suggest specific biochemical functions. A variant of the Jab1/MPN domain found in a class of deubiquitinating enzymes is present near the C terminus of Prp8p. Ubiquitination regulates a broad range of cellular pathways, and its functions generally require ubiquitin recognition by one or more ubiquitin-binding domains (UBDs). No precise role for ubiquitin has been defined in the pre-mRNA splicing pathway, and no known UBDs have been found within splicing proteins. Here we show that a Prp8p fragment containing the Jab1/MPN domain binds directly to ubiquitin with an affinity comparable to other known UBDs. Several mutations within this domain that compromise splicing also reduce interaction of the fragment with ubiquitin-Sepharose. Our results define a new UBD and suggest functional links between ubiquitin and the pre-mRNA splicing machinery.  相似文献   

19.
Several lines of evidences indicate that U1 and U2 snRNPs become interacting during pre-mRNA splicing. Here we present data showing that an U1-U2 snRNPs interaction can be mediated by an RNA only containing the consensus 5' splice site of all of the sequences characteristic of pre-mRNAs. Using monospecific antibodies (anti-(U1) RNP and anti-(U2) RNP), we have found that a tripartite complex comprising U1 and U2 snRNPs is immunoprecipitated in the presence of a consensus 5' splice site containing RNA, either from a crude extract or from an artificial mixture enriched in U1 and U2 snRNPs. This complex does not appear in the presence of an RNA lacking the sequence complementary to the 5' terminus of U1 snRNA. Moreover, RNAse T1 protection coupled to immunoprecipitation experiments have demonstrated that only the 5' end sequence of U1 snRNA contacts the consensus 5' splice site containing RNA, arguing that U2 snRNP binding in the tripartite complex is mediated by U1 snRNP.  相似文献   

20.
M M Konarska  P A Sharp 《Cell》1987,49(6):763-774
Electrophoretic separation of ribonucleoprotein particles in a nondenaturing gel was used to analyze the splicing of mRNA precursors. Early in the reaction, a complex formed consisting of the U2 small nuclear ribonucleoprotein particle (snRNP) bound to sequences upstream of the 3' splice site. This complex is modeled as a precursor of a larger complex, the spliceosome, which contains U2, U4/6, and U5 snRNPs. Conversion of the U2 snRNP-precursor RNA complex to the spliceosome probably involves binding of a single multi-snRNP particle containing U4/6 and U5 snRNPs. The excised intron was released in a complex containing U5, U6, and probably U2 snRNPs. Surprisingly, U4 snRNP was not part of the intron-containing complex, suggesting that U4/6 snRNP disassembles and assembles during splicing. Subsequently, the reassembled U4/6 snRNP would associate with U5 snRNP and participate in de novo spliceosome formation. U1 snRNP was not detected in any of the splicing complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号