首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
2.
The influence of maternally transmitted immunoglobulins on the development of autoimmune diabetes mellitus in genetically susceptible human progeny remains unknown. Given the presence of islet beta cell-reactive autoantibodies in prediabetic nonobese diabetic (NOD) mice, we abrogated the maternal transmission of such antibodies in order to assess their influence on the susceptibility of progeny to diabetes. First, we used B cell-deficient NOD mothers to eliminate the transmission of maternal immunoglobulins. In a complementary approach, we used immunoglobulin transgenic NOD mothers to exclude autoreactive specificities from the maternal B-cell repertoire. Finally, we implanted NOD embryos in pseudopregnant mothers of a non-autoimmune strain. The NOD progeny in all three groups were protected from spontaneous diabetes. These findings demonstrate that the maternal transmission of antibodies is a critical environmental parameter influencing the ontogeny of T cell-mediated destruction of islet beta cells in NOD mice. It will be important to definitively determine whether the transmission of maternal autoantibodies in humans affects diabetes progression in susceptible offspring.  相似文献   

3.
Trade-offs in Energy Allocation During Lactation   总被引:1,自引:0,他引:1  
SYNOPSIS. During lactation, mothers require energy to meet bothmaternal and offspring requirements. If a mother exports toomuch energy to dependent offspring (in milk), her weight lossmay be excessive and maternal risk may increase. Conversely,too little energy allocation to offspring may reduce the growthrate or induce mortality of dependent offspring. This paradigmwas evaluated in cotton rats (Sigmodon hispidus) supportingsmall (3 pup) and large (6 pup) litters from early to late lactation.Several types of evidence indicate that physiological constraintslimit the ability of mothers with large litters to provide resourcesto offspring. Mothers with large litters produced a dilute,energy-poor milk and their rates of food intake, weight lossand energy export per litter appeared to approach physiologicalmaxima. Whereas the energy exported to pups in small littersincreased from early to late lactation, the energy flow perpup in large litters was consistently low; consequently, offspringin large litters had low growth rates. An increase in eithermaternal food intake or weight loss (catabolism of maternaltissue) could have provided additional energy to offset thelow growth rate of pups in large litters. However, mothers withlarge litters did not substantially increase their food intakeor weight loss compared with mothers supporting small litters.These results indicate that the maternal support of offspringin large litters is limited. The pattern of energy allocationshown by cotton rats with large litters likely reflects a compromisebetween meeting maternal and offspring energy requirements (cf.,Parker and Macnair, 1979). The energy flow is greater than optimalfor the parent but less than optimal for the offspring. Lessmaternal-offspring conflict occurs in small than large littersbecause offspring in small litters maintain a high growth rateat a relatively low maternal cost. Yet, under favorable environmentalconditions, the reduction in maternal-offspring conflict hasno apparent fitness benefit.  相似文献   

4.
Maternal effects on offspring phenotypes occur because mothers in many species provide an environment for their developing young. Although these factors are correctly "environmental" with respect to the offspring genome, their variance may have both a genetic and an environmental basis in the maternal generation. Here, reciprocal crosses between C57BL/6J and 10 LGXSM recombinant inbred (RI) strains were performed, and litters were divided at weaning into high-fat and low-fat dietary treatments. Differences between reciprocal litters were used to measure genetic maternal effects on offspring phenotypes. Nearly all traits, including weekly body weights and adult blood serum traits, show effects indicative of genetic variation in maternal effects across RI strains, allowing the quantitative trait loci involved to be mapped. Although much of the literature on maternal effects relates to early life traits, we detect strong and significant maternal effects on traits measured at adulthood (as much as 10% of the trait variance at 17 or more weeks after weaning). We also found an interaction affecting adult phenotype between the effects of maternal care between RI strain mothers and C57BL/6J mothers and a later environmental factor (dietary fat intake) for some age-specific weights.  相似文献   

5.
Knip M 《Hormone research》2002,57(Z1):6-11
The clinical presentation of type 1 diabetes is preceded by an asymptomatic latent period characterized by the presence of diabetes-associated autoantibodies in the peripheral circulation, reflecting beta-cell damage. This prediabetic period may last for months and years. Several studies observing genetically susceptible subjects from birth have shown that insulin autoantibodies (IAA) are the first or among the first autoantibodies to appear in young children, implying that insulin may be the primary autoantigen in most cases of childhood type 1 diabetes. About 12-16% of siblings of children with type 1 diabetes have been observed to test positive for at least one diabetes-associated autoantibody, whereas the risk of diabetes among siblings has been estimated to be 6-8%. In parallel, close to 4% of Finnish schoolchildren tested positive for at least one diabetes-associated autoantibody; the lifetime risk of type 1 diabetes in the Finnish population has been estimated to be close to 1%. These observations suggest that only 25-50% of those with signs of beta-cell autoimmunity eventually progress to clinical type 1 diabetes. Accordingly there is a considerable proportion of children in whom beta-cell autoimmunity remains subclinical or is aborted. Positivity for only one diabetes-associated autoantibody may actually represent innocent beta-cell autoimmunity, while positivity for two or more autoantibodies seems to mark a point of no return. The autoimmune response is very dynamic in the early phase of prediabetes, with spreading from one antigen to another and from one epitope to another within a given antigen. In addition both isotype spreading and switching can be observed in early prediabetes. This indicates that the early prediabetic process may be a suitable target for immunomodulation aimed at delaying or preventing progression to clinical diabetes.  相似文献   

6.
Explaining the seasonal decline in litter size in European ground squirrels   总被引:1,自引:0,他引:1  
In European ground squirrels Spermophilus citellus as in many ground squirrel species. late born litters are composed of fewer young than early born litters. Two alternative though not mutually exclusive hypotheses may explain this seasonal pattern of change in litter size. On the one hand. the production of few large young late in the season may be an adaptation to time limitations on the offspring. that have to complete growth and fattening prior to hibernation. Then one would expect a trade-off between offspring number and size as the breeding season progresses. At its extreme. this hypothesis would predict that total maternal effort should be equal independent of litter size. Alternatively. litter size may be determined by physiological limitations on the mother. in that highly constrained mothers breed later and produce smaller litters. Then one would expect reduced overall maternal effort in highly constrained mothers of smaller litters. In this case. a trade-off between litter size and offspring size would not be expected. We found that total maternal effort in terms of gestation length and the duration of lactation increased with increasing litter size. thus supporting the second hypothesis. Lactation was not terminated at natal emergence. It extended a relatively long period of time beyond the time of first litter emergence depending on litter size. During prolonged lactation. individual young of large litters made up body mass to young of small litters. As a consequence. juvenile weaning body mass was unaffected by litter size although offspring body mass at natal emergence was inversely related to litter size. This additional weight gain in young of large litters compensated for initial survival disadvantages and presumably affected fecundity at yearling age.  相似文献   

7.
Insulin resistance and obesity are components of the metabolic syndrome that includes development of cardiovascular disease and diabetes with advancing age. The thrifty phenotype hypothesis suggests that offspring of poorly nourished mothers are predisposed to the various components of the metabolic syndrome due to adaptations made during fetal development. We assessed the effects of maternal nutrient restriction in early gestation on feeding behavior, insulin and glucose dynamics, body composition, and liver function in aged female offspring of ewes fed either a nutrient-restricted [NR 50% National Research Council (NRC) recommendations] or control (C: 100% NRC) diet from 28 to 78 days of gestation, after which both groups were fed at 100% of NRC from day 79 to lambing and through lactation. Female lambs born to NR and C dams were reared as a single group from weaning, and thereafter, they were fed 100% NRC recommendations until assigned to this study at 6 yr of age. These female offspring were evaluated by a frequently sampled intravenous glucose tolerance test, followed by dual-energy X-ray absorptiometry for body composition analysis prior to and after ad libitum feeding of a highly palatable pelleted diet for 11 wk with automated monitoring of feed intake (GrowSafe Systems). Aged female offspring born to NR ewes demonstrated greater and more rapid feed intake, greater body weight gain, and efficiency of gain, lower insulin sensitivity, higher insulin secretion, and greater hepatic lipid and glycogen content than offspring from C ewes. These data confirm an increased metabolic "thriftiness" of offspring born to NR mothers, which continues into advanced age, possibly predisposing these offspring to metabolic disease.  相似文献   

8.
Objective: This study aimed to determine the relationship between different forms of, and potential pathways between, maternal diabetes and childhood obesity at different ages. Methods: Prospective cohort data from The Environmental Determinants of Diabetes in the Young (TEDDY) study, which was composed of 5,324 children examined from 0.25 to 6 years of age, were analyzed. Cross‐sectional and longitudinal analyses taking into account potential confounders and effect modifiers such as maternal prepregnancy BMI and birth weight z scores were performed. Results: Offspring of mothers with gestational diabetes mellitus (GDM) or type 1 diabetes mellitus (T1DM) showed a higher BMI standard deviation score and increased risk for overweight and obesity at 5.5 years of age than offspring of mothers without diabetes. While these associations could be substantially explained by maternal prepregnancy BMI in offspring of mothers with GDM, significant associations disappeared after adjustment for birth weight z scores in offspring of T1DM mothers. Furthermore, overweight risk became stronger with increasing age in offspring of mothers with diabetes compared with offspring of mothers without diabetes. Conclusions: Maternal diabetes is associated with increased risk of offspring overweight, and the association appears to get stronger as children grow older. Indeed, intrauterine exposure to maternal T1DM may predispose children to later obesity through increased birth weight, while maternal BMI is more important in children exposed to GDM.  相似文献   

9.
Diabetic pregnancy frequently results in macrosomia or fetal obesity. It seems that the anomalies in carbohydrate and lipid metabolism in macrosomic infants of diabetic mothers are due to maternal hyperglycemia, which leads to fetal hyperinsulinemia. We have developed a rat model of macrosomic offspring and assessed the onset of obesity in these animals. The macrosomic offspring born to diabetic mothers are prone to the development of glucose intolerance and obesity as a function of age. It seems that in utero programing during diabetic pregnancy creates a “metabolic memory” which is responsible for the development of obesity in macrosomic offspring. We have demonstrated that the metabolism of lipids, and altered anti-oxidant status and immune system are implicated in the etiopathology of obesity in these animals. We have reported beneficial effects of n-3 polyunsaturated fatty acids (PUFAs) in obese animals, born to diabetic dams.  相似文献   

10.
Sex-allocation theories generally assume differential fitness costs of raising sons and daughters. Yet, experimental confirmation of such costs is scarce and potential mechanisms are rarely addressed. While the most universal measure of physiological costs is energy expenditure, only one study has related the maternal energy budget to experimentally controlled offspring sex. Here, we experimentally test this in the bank vole (Myodes glareolus) by simultaneously manipulating the litter's size and sex ratio immediately after birth. Two weeks after manipulation, when mothers were at the peak of lactation and were pregnant with concurrent litters, we assessed their energy budget. We found that maternal food consumption and daily energy expenditure increased with the size of the litters being lactated. Importantly, the effects of offspring sex on energy budget depended on the characteristics of the simultaneously gestating litters. Specifically, the mothers nursing all-male litters and concurrently pregnant with male-biased litters had the highest energy expenditure. These had consequences for the next generation, as size of female offspring from the concurrent pregnancy of these mothers was compromised. Our study attests a higher cost of sons, consequently leading to a lower investment in them, and reveals the significance of offspring sex in moulding the trade-off between current and future maternal investment.  相似文献   

11.

Aim/Hypothesis

Maternal diabetes and high-fat feeding during pregnancy have been linked to later life outcomes in offspring. To investigate the effects of both maternal and paternal hyperglycemia on offspring phenotypes, we utilized an autosomal dominant mouse model of diabetes (hypoinsulinemic hyperglycemia in Akita mice). We determined metabolic and skeletal phenotypes in wildtype offspring of Akita mothers and fathers.

Results

Both maternal and paternal diabetes resulted in phenotypic changes in wildtype offspring. Phenotypic changes were more pronounced in male offspring than in female offspring. Maternal hyperglycemia resulted in metabolic and skeletal phenotypes in male wildtype offspring. Decreased bodyweight and impaired glucose tolerance were observed as were reduced whole body bone mineral density and reduced trabecular bone mass.Phenotypic changes in offspring of diabetic fathers differed in effect size from changes in offspring of diabetic mothers. Male wildtype offspring developed a milder metabolic phenotype, but a more severe skeletal phenotype. Female wildtype offspring of diabetic fathers were least affected.

Conclusions

Both maternal and paternal diabetes led to the development of metabolic and skeletal changes in wildtype offspring, with a greater effect of maternal diabetes on metabolic parameters and of paternal diabetes on skeletal development. The observed changes are unlikely to derive from Mendelian inheritance, since the investigated offspring did not inherit the Akita mutation. While fetal programming may explain the phenotypic changes in offspring exposed to maternal diabetes in-utero, the mechanism underlying the effect of paternal diabetes on wildtype offspring is unclear.  相似文献   

12.

Background

This study examines the effect of diabetes in pregnancy on offspring weight at birth and ages 1 and 5 years.

Methods

A population-based electronic cohort study using routinely collected linked healthcare data. Electronic medical records provided maternal diabetes status and offspring weight at birth and ages 1 and 5 years (n = 147,773 mother child pairs). Logistic regression models were used to obtain odds ratios to describe the association between maternal diabetes status and offspring size, adjusted for maternal pre-pregnancy weight, age and smoking status.

Findings

We identified 1,250 (0.9%) pregnancies with existing diabetes (27.8% with type 1 diabetes), 1,358 with gestational diabetes (0.9%) and 635 (0.4%) who developed diabetes post-pregnancy. Children whose mothers had existing diabetes were less likely to be large at 12 months (OR: 0.7 (95%CI: 0.6, 0.8)) than those without diabetes. Maternal diabetes was associated with high weight at age 5 years in children whose mothers had a high pre-pregnancy weight tertile (gestational diabetes, (OR:2.1 (95%CI:1.25–3.6)), existing diabetes (OR:1.3 (95%CI:1.0 to 1.6)).

Conclusion

The prevention of childhood obesity should focus on mothers with diabetes with a high maternal pre-pregnancy weight. We found little evidence that diabetes in pregnancy leads to long term obesity ‘programming’.  相似文献   

13.
The islet autoimmunity of preclinical type 1 diabetes remains poorly characterized in humans. In this paper, the IgG subclass response to the islet autoantigens insulin, glutamic acid decarboxylase, and IA-2 was studied sequentially from birth to diabetes onset or current follow-up in 26 autoantibody positive offspring of parents with diabetes. Islet autoantibody appearance was characterized by an early IgG1 peak response to one or more Ags, most commonly to insulin, at a median age of 2.2 yr (interquartile range, 2-2.9 yr). In five offspring, an acute fulminant beta-cell destruction and diabetes onset occurred during this initial Ab response. In the remainder, early Ab levels declined markedly, and Ab peaks against other beta cell Ags arose sequentially over several years suggesting regulation and spreading of autoimmunity. Second peak Ab responses to the same Ag were observed in only two offspring, both developing diabetes at this time. Two others developed diabetes with declining Ab levels. Abs of IgG1 subclass dominated against each Ag, and other subclasses, were usually only detected during peak IgG1 responses. The IgG4 response to insulin was exceptional, being dominant over IgG1 in four offspring and in five others appeared and/or persisted after IgG1 levels declined. These Th2-associated IgG4 responses were not correlated with protection from diabetes. The presence of IgG1-restricted responses to DA2 were associated with diabetes development. These findings suggest that type 1 diabetes has an early acute destructive phase of beta cell autoimmunity, which may be regulated and which spreads chronically until diabetes onset.  相似文献   

14.
It has been shown that maternal diabetes increases the risk for obesity, glucose intolerance, and Type 2 diabetes mellitus in the adult life of the offspring. Mechanisms for these effects on the offspring are not well understood, and little information is available to reveal the mechanisms. We studied the effect of maternal diabetes on beta-cell function in the offspring of streptozotocin (STZ)-induced diabetic rat mothers (STZ-offspring). STZ-offspring did not become glucose intolerant up to 15 wk of age. At this age, however, insulin secretion was significantly impaired, as measured by in vivo and in vitro studies. Consistent with these changes, islet glucose metabolism and some important glucose metabolic enzyme activities were reduced. No significant changes were found in islet morphological analysis. These data indicate that beta-cell function is impaired in adult STZ-offspring; these changes may contribute to the development of type 2 diabetes mellitus in adulthood.  相似文献   

15.
Human diseases in adulthood are increasingly associated with growth patterns in early life, implicating early-life nutrition as the underlying mechanism. The thrifty phenotype hypothesis proposed that early-life metabolic adaptations promote survival, with the developing organism responding to cues of environmental quality by selecting an appropriate trajectory of growth. Recently, some authors have proposed that the thrifty phenotype is also adaptive in the longer-term, by preparing the organism for its likely adult environment. However, windows of plasticity close early during human development, and subsequent environmental changes may result in the selected trajectory becoming inappropriate, leading to adverse effects on health. This paradox generates uncertainty as to whether the thrifty phenotype is indeed adaptive for the offspring in humans. The thrifty phenotype should not be considered a dichotomous concept, rather it refers to the capacity of all offspring to respond to environmental information during early ontogenetic development. This article argues that the thrifty phenotype is the consequence of three different adaptive processes - niche construction, maternal effects, and developmental plasticity - all of which in humans are influenced by our large brains. While developmental plasticity represents an adaptation by the offspring, both niche construction and parental effects are subject to selection on parental rather than offspring fitness. The three processes also operate at different paces. Human offspring do not become net calories-producers until around 18 years of age, such that the high energy costs of the human brain are paid primarily by the mother, even after weaning. The evolutionary expansion of human brain volume occurred in environments characterised by high volatility, inducing strong selective pressure on maternal capacity to provision multiple offspring simultaneously. The thrifty phenotype is therefore best considered as a manipulation of offspring phenotype for the benefit of maternal fitness. The information that enters offspring phenotype during early development does not predict the likely future environment of the offspring, but rather reflects the mother's own developmental experience and the quality of the environment during her own maturation. Offspring growth trajectory thus becomes aligned with long-term maternal capacity to provision. In contemporary populations, the sensitivity of offspring development to maternal phenotype exposes the offspring to adverse effects, through four distinct pathways. The offspring may be exposed to (1) poor maternal metabolic control (e.g. gestational diabetes), (2) maternally derived toxins (e.g. maternal smoking), or (3) low maternal social status (e.g. small size). Adverse consequences of these effects may then be exacerbated by (4) exposure either to the "toxic" western environment in postnatal life, in which diet and physical activity levels are mismatched with metabolic experience in utero, or at the other extreme to famine. The rapid emergence of the epidemic of the metabolic syndrome in the 20th Century reflects the rapid acceleration in the pace of niche construction relative to the slower physiological combination of developmental plasticity and parental effects.  相似文献   

16.
Maternal effects are ubiquitous in nature and affect a wide range of offspring phenotypes. Recent research suggests that maternal effects also contribute to ageing, but the theoretical basis for these observations is poorly understood. Here we develop a simple model to derive expectations for (i) if maternal effects on ageing evolve; (ii) the strength of maternal effects on ageing relative to direct environmental effects; and (iii) the predicted relationships between environmental quality, maternal age and offspring lifespan. Our model is based on the disposable soma theory of ageing, and the key assumption is thus that mothers trade off their own somatic maintenance against investment in offspring. This trade-off affects the biological age of offspring at birth in terms of accumulated damage, as indicated by biomarkers such as oxidative stress or telomere length. We find that the optimal allocation between investment in maternal somatic investment and investment in offspring results in old mothers and mothers with low resource availability producing offspring with reduced life span. Furthermore, the effects are interactive, such that the strongest maternal age effects on offspring lifespan are found under low resource availability. These findings are broadly consistent with results from laboratory studies investigating the onset and rate of ageing and field studies examining maternal effects on ageing in the wild.  相似文献   

17.
As an autoimmune disease, type 1 diabetes mellitus (DM) can be associated with other autoimmune disorders. The aim of this study was to detect subclinically associated autoimmune thyroid disease, coeliac disease, and Addison's disease. The presence of autoantibodies was evaluated with special regard to the control of diabetes and to the clinical status of the patient. Fifty-one type 1 diabetic patients (22 men, 29 women, mean age 37+/-11 years, mean duration of diabetes 16+/-13 years) were included into this study. Specific antibodies to islet antigens--glutamic acid decarboxylase (GAD65), protein thyrosine phosphatase IA-2alpha, and to thyroid autoantigens--thyroid microsomal peroxidase (TPO) and thyroglobulin (TG) and also thyroid stimulating hormone (TSH) were measured by RIA. Autoantigens of the small intestine--tissue transglutaminase autoantibodies (ATTG), IgA and IgG antibodies to gliadin (AGA-IgA, AGA-IgG) were evaluated by ELISA. Endomysial autoantibodies (EMA) and adrenal cortex antibodies (ACA) were detected by indirect immunofluorescence microscopy. Eleven new cases of thyreopathy (22 % of patients) were detected by the assessment of thyroid autoantibodies and TSH. Two new cases of thyreotoxicosis were diagnosed during the study. Coeliac disease was diagnosed in at least two cases. Addison's disease was not diagnosed, although the ACA were positive in two patients. No influence of single or combined autoantibody positivity on the control of diabetes was found if normal organ function was preserved. In both patients with thyreotoxicosis the control of diabetes was worsened and improved after treatment. The screening of autoantibodies in type 1 diabetic patients could reveal subclinical cases of AITD or coeliac disease. Subclinical forms of these disorders have no influence on diabetes control. However, impaired organ function may be associated with the worsened control of diabetes as we demonstrated on two newly diagnosed cases of thyreotoxicosis. We suggest the need for the follow-up of patients with positive autoantibodies because further deterioration of the respective organs can be expected.  相似文献   

18.
A link has been established between prenatal nutrition and the development of metabolic and cardiovascular diseases later in life, a process referred to as developmental programming. It has been suggested that the trajectory of development is shifted by alterations in the maternal nutritional state leading to changes in developmental plasticity, in part underpinned by epigenetic changes in gene regulation. However, to date, only candidate gene approaches have been used to assess expression and molecular changes in the offspring of maternally undernourished animals. Furthermore, most work has focused on animals at an age where the programmed phenotype is already manifest and little is known about changes in gene expression in the offspring prior to development of obesity and related metabolic disorders. Gene expression profiles of liver, retroperitoneal white adipose fat, and biceps femoris skeletal muscle tissue from young adult male rats (55 days old) in which nutritional status had been manipulated in utero by maternal undernutrition (UN) were compared to the profiles of offspring of ad libitum fed mothers serving as the control group (AD) (8 offspring/group). The expression profiles were determined using the Illumina RatRef-12 BeadChip. No significant changes in expression were identified for skeletal muscle or white adipose tissue. However, studies of liver tissue showed 249 differentially expressed genes (143 up regulated, 106 down regulated). Although the animals at day 55 have yet to develop obesity they already show biochemical abnormalities and by day 110 express a phenotype characterized by increased adiposity and altered insulin sensitivity. An analysis of pathways affected suggests that intrauterine programming of UN animals to favor fat as an energy source results in mitochondrial dysfunction which initially affects the postnatal hepatic function and subsequently, via the resultant metabolic changes in other organs leads to the evolution of a phenotype similar to that of the metabolic syndrome.  相似文献   

19.
The association between an adverse early life environment and increased susceptibility to later-life metabolic disorders such as obesity, type 2 diabetes and cardiovascular disease is described by the developmental origins of health and disease hypothesis. Employing a rat model of maternal high fat (MHF) nutrition, we recently reported that offspring born to MHF mothers are small at birth and develop a postnatal phenotype that closely resembles that of the human metabolic syndrome. Livers of offspring born to MHF mothers also display a fatty phenotype reflecting hepatic steatosis and characteristics of non-alcoholic fatty liver disease. In the present study we hypothesised that a MHF diet leads to altered regulation of liver development in offspring; a derangement that may be detectable during early postnatal life. Livers were collected at postnatal days 2 (P2) and 27 (P27) from male offspring of control and MHF mothers (n = 8 per group). Cell cycle dynamics, measured by flow cytometry, revealed significant G0/G1 arrest in the livers of P2 offspring born to MHF mothers, associated with an increased expression of the hepatic cell cycle inhibitor Cdkn1a. In P2 livers, Cdkn1a was hypomethylated at specific CpG dinucleotides and first exon in offspring of MHF mothers and was shown to correlate with a demonstrable increase in mRNA expression levels. These modifications at P2 preceded observable reductions in liver weight and liver∶brain weight ratio at P27, but there were no persistent changes in cell cycle dynamics or DNA methylation in MHF offspring at this time. Since Cdkn1a up-regulation has been associated with hepatocyte growth in pathologic states, our data may be suggestive of early hepatic dysfunction in neonates born to high fat fed mothers. It is likely that these offspring are predisposed to long-term hepatic dysfunction.  相似文献   

20.
Previously, we demonstrated that adult blood pressure was increased in offspring of rabbit mothers with chronic secondary renal hypertension. Our study identified sex-specific differences in the programming of hypertension, with female, not male, offspring, having increased blood pressure at 30 wk of age. The aim of this study was to characterize the maternal hypertension during pregnancy to determine potential programming stimuli. Further, we examined the impact of chronic maternal hypertension on offspring birth weight, nephron number, and renal noradrenaline content (as an index of renal innervation density). Three groups of mothers and their offspring were studied: two-kidney, one-wrap (2K-1W, n = 9 mothers) hypertensive, two-kidney, two-wrap (2K-2W, n = 8) hypertensive, and a sham-operated group (n = 9). Mean arterial blood pressure was increased by approximately 20 mmHg throughout pregnancy in both hypertensive groups compared with sham mothers (P(G) < 0.001). Plasma renin activity (PRA; P(G) < 0.05) and aldosterone (P(G) < 0.05) levels were increased during gestation in the 2K-1W, but not the 2K-2W mothers. Birth weight was increased by approximately 20% in offspring of both groups of hypertensive mothers (P(T) < 0.001), though this was associated with a reduction in litter size. Renal noradrenaline content was increased ( approximately 40%, P < 0.05) at 5 wk of age in female 2K-1W offspring compared with sham offspring. Glomerular number was not reduced in female offspring of either group of hypertensive mothers; however, glomerular tuft volume was reduced in female 2K-2W offspring (P < 0.05), indicative of a reduction in glomerular filtration surface area. In conclusion, the two models of renal hypertension produced differential effects on the offspring. The impact of a stimulated maternal renin-angiotensin system in the 2K-1W model of hypertension may influence development of the renal sympathetic nerves and contribute to programming of adult hypertension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号