首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Polyunsaturated fatty acids can be omega-oxidized to dicarboxylic polyunsaturated fatty acids (DC-PUFA), bioactive compounds which cause vasodilatation and activation of PPARalpha and gamma. DC-PUFA can be shortened by beta-oxidation, and to determine whether mitochondria and/or peroxisomes are responsible for this degradation 20-carboxy-[1-(14)C]-eicosatetraenoic acid (20-COOH-AA) was synthesized and given to hepatocytes from mouse models with peroxisomal dysfunctions. In contrast to wild type cells, hepatocytes from mice with liver-selective elimination of peroxisomes, due to Pex5p deficiency, failed to produce (14)CO(2) and labeled acid-soluble oxidation products, indicating that peroxisomes are involved in the degradation of 20-COOH-AA. Subsequently, the oxidation of 20-COOH-AA was analyzed in hepatocytes lacking multifunctional protein 1 (MFP1) or MFP2, key enzymes of the peroxisomal beta-oxidation. Degradation of 20-COOH-AA was partially impaired in MFP1, but not in MFP2 knockout hepatocytes. Taken together, peroxisomes and not mitochondria are the site of beta-oxidation of DC-PUFA, and MFP1 is involved in this process.  相似文献   

2.
1. Bombina orientalis excretes mainly C27 bile acids: trihydroxycoprostanic and varanic acids. More than 90% of the trihydroxycoprostanic acid (THCA) present in the bile, was conjugated with taurine; varanic acid was present in the unconjugated form. 2. Trihydroxycoprostanoyl-CoA (THC-CoA) synthetase activity, required for the formation of the taurine conjugate, was present in the liver of Bombina orientalis. 3. Peroxisomal beta-oxidation, which catalyzes the oxidation of fatty acids as well as the conversion of C27 bile acids into C24 bile acids in rat and human liver, could be detected in liver of Bombina orientalis when palmitoyl-CoA was used as substrate, but not when trihydroxycoprostanoyl-CoA (THC-CoA) was used.  相似文献   

3.
Metabolism-dependent inactivators of 3-ketothiolase I and carnitine acyltransferase I (CAT I) have been used to study the oxidation of fatty acids in intact hepatocytes. 2-Bromooctanoate inactivates mitochondrial and peroxisomal 3-ketothiolases I in a time-dependent manner. During the first 5 min of incubation, inactivation of 3-ketothiolase in mitochondria is five times faster than its inactivation in peroxisomes. Almost complete inactivation of 3-ketothiolase I in both types of organelle is achieved after incubation with 1 mM 2-bromooctanoate for 40 min. The inactivation is not affected by preincubating hepatocytes with 20 microM tetradecylglycidate (TDGA), an inactivator of CAT I, under conditions which cause greater than 95% inactivation of CAT I. 2-Bromododecanoate (1 mM) causes 60% inactivation of mitochondrial and peroxisomal 3-ketothiolases I in 40 min. These inactivations are greatly reduced by preincubating hepatocytes with 20 microM TDGA, demonstrating that 2-bromododecanoate enters both mitochondria and peroxisomes via its carnitine ester. 2-Bromopalmitate (1 mM) causes less than 5% inactivation of mitochondrial and peroxisomal 3-ketothiolases I in 40 min, but causes 95% inactivation of CAT I during this time. Incubation of hepatocytes with 10-200 microM 2-bromopalmitoyl-L-carnitine causes inactivation of mitochondrial and peroxisomal 3-ketothiolases I at similar rates. This inactivation is decreased by palmitoyl-D-carnitine during the first 5 min of incubation. Pretreating hepatocytes with 20 microM TDGA does not affect the inactivation of mitochondrial or peroxisomal 3-ketothiolase I by 2-bromopalmitoyl-L-carnitine. These results demonstrate that in intact hepatocytes, peroxisomes oxidize fatty acids of medium-chain length by a carnitine-independent mechanism, whereas they oxidize long-chain fatty acids by a carnitine-dependent mechanism.  相似文献   

4.
The mammalian pineal gland is a prominent secretory organ with a high metabolic activity. Melatonin (N-acetyl-5-methoxytryptamine), the main secretory product of the pineal gland, efficiently scavenges both the hydroxyl and peroxyl radicals counteracting lipid peroxidation in biological membranes. Approximately 25% of the total fatty acids present in the rat pineal lipids are represented by arachidonic acid (20:4n-6) and docosahexaenoic acid (22:6n-3). These very long chain polyunsaturated fatty acids play important roles in the pineal gland. In addition to the production of melatonin, the mammalian pineal gland is able of convert these polyunsaturated fatty acids into bioactive lipid mediators. Lipoxygenation is the principal lipoxygenase (LOX) activity observed in the rat pineal gland. Lipoxygenation in the pineal gland is exceptional because no other brain regions express significant LOX activities under normal physiological conditions. The rat pineal gland expresses both 12- and 15-lipoxygenase (LOX) activities, producing 12- and 15-hydroperoxyeicosatetraenoic acid (12- and 15-HpETE) from arachidonic acid and 14- and 17-hydroxydocosahexaenoic acid (14- and 17-HdoHE) from docosahexaenoic acid, respectively. The rat pineal also produces hepoxilins via LOX pathways. The hepoxilins are bioactive epoxy-hydroxy products of the arachidonic acid metabolism via the 12S-lipoxygenase (12S-LOX) pathway. The two key pineal biochemical functions, lipoxygenation and melatonin synthesis, may be synergistically regulated by the status of n-3 essential fatty acids.  相似文献   

5.
A method was developed to prepare peroxisome-enriched fractions depleted of microsomes and mitochondria from cultured skin fibroblasts. The method consists of differential centrifugation of a postnuclear supernatant followed by density gradient centrifugation on a discontinuous Metrizamide gradient. The activity of hexacosanoyl-CoA synthetase was subsequently measured in postnuclear supernatants and peroxisome-enriched fractions prepared from cultured skin fibroblasts from control subjects and patients with X-linked adrenoleukodystrophy. Whereas the hexacosanoyl-CoA synthetase activity in postnuclear supernatants of X-linked adrenoleukodystrophy fibroblasts was only slightly decreased (77.8 +/- 4.4% of control (n = 15], enzyme activity was found to be much more markedly reduced in peroxisomal fractions isolated from the mutant fibroblasts (19.6 +/- 6.7% of control (n = 5]. This is a direct demonstration that the defect in X-linked adrenoleukodystrophy is at the level of a deficient ability of peroxisomes to activate very long chain fatty acids, as first suggested by Hashmi et al. [Hashmi, M., Stanley, W. and Singh, I. (1986) FEBS Lett. 86, 247-250].  相似文献   

6.
The intestine has an extraordinary capacity for fatty acid (FA) absorption. Numerous candidates for a protein-mediated mechanism of dietary FA absorption have been proposed, but firm evidence for this process has remained elusive. Here we show that the scavenger receptor CD36 is required both for the uptake of very long chain FAs (VLCFAs) in cultured cells and the absorption of dietary VLCFAs in mice. We found that the fraction of CD36-dependent saturated fatty acid association/absorption in these model systems is proportional to the FA chain length and specific for fatty acids and fatty alcohols containing very long saturated acyl chains. Moreover, intestinal VLCFA absorption is completely abolished in CD36-null mice fed a high fat diet, illustrating that the predominant mechanism for VLCFA absorption is CD36-dependent. Together, these findings represent the first direct evidence for protein-facilitated FA absorption in the intestine and identify a novel therapeutic target for the treatment of diseases characterized by elevated VLCFA levels.  相似文献   

7.
Branched chain fatty acids (BCFA) and linear chain/normal odd chain fatty acids (n-OCFA) are major fatty acids in human skin lipids, especially sebaceous gland (SG) wax esters. Skin lipids contain variable amounts of monounsaturated BCFA and n-OCFA, in some reports exceeding over 20% of total fatty acids. Fatty acid desaturase 2 (FADS2) codes for a multifunctional enzyme that catalyzes Δ4-, Δ6- and Δ8-desaturation towards ten unsaturated fatty acids but only one saturate, palmitic acid, converting it to 16:1n-10; FADS2 is not active towards 14:0 or 18:0. Here we test the hypothesis that FADS2 also operates on BCFA and n-OCFA. MCF-7 cancer cells stably expressing FADS1 or FADS2 along with empty vector control cells were incubated with anteiso-15:0, iso-16:0, iso-17:0, anteiso-17:0, iso-18:0, or n-17:0. BCFA were Δ6-desaturated by FADS2 as follows: iso-16:0 → iso-6Z-16:1, iso-17:0 → iso-6Z-17:1, anteiso-17:0 → anteiso-6Z-17:1 and iso-18:0 → iso-6Z-18:1. anteiso-15:0 was not desaturated in either FADS1 or FADS2 cells. n-17:0 was converted to both n-6Z-17:1 by FADS2 Δ6-desaturation and n-9Z-17:1 by SCD Δ9-desaturation. We thus establish novel FADS2-coded enzymatic activity towards BCFA and n-OCFA, expanding the number of known FADS2 saturated fatty acid substrates from one to six. Because of the importance of FADS2 in human skin, our results imply that dysfunction in activity of sebaceous FADS2 may play a role in skin abnormalities associated with skin lipids.  相似文献   

8.
The effect of ciprofibrate, a hypolipidemic drug, was examined in the metabolism of palmitic (C16:0) and lignoceric (C24:0) acids in rat liver. Ciprofibrate is a peroxisomal proliferating drug which increases the number of peroxisomes. The palmitoyl-CoA ligase activity in peroxisomes, mitochondria and microsomes from ciprofibrate treated liver was 3.2, 1.9 and 1.5-fold higher respectively and the activity for oxidation of palmitic acid in peroxisomes and mitochondria was 8.5 and 2.3-fold higher respectively. Similarly, ciprofibrate had a higher effect on the metabolism of lignoceric acid. Treatment with ciprofibrate increased lignoceroyl-CoA ligase activity in peroxisomes, mitochondria and microsomes by 5.3, 3.3 and 2.3-fold respectively and that of oxidation of lignoceric acid was increased in peroxisomes and mitochondria by 13.4 and 2.3-fold respectively. The peroxisomal rates of oxidation of palmitic acid (8.5-fold) and lignoceric acid (13.4-fold) were increased to a different degree by ciprofibrate treatment. This differential effect of ciprofibrate suggests that different enzymes may be responsible for the oxidation of fatty acids of different chain length, at least at one or more step(s) of the peroxisomal fatty acid -oxidation pathway.  相似文献   

9.
10.
High pressure liquid chromatography with a narrow bore C8 column has been used to separate pristanic, phytanic and very long chain fatty acids, important in the diagnosis of peroxisomal disorders, for their accurate isotope dilution quantification by tandem mass spectrometry. The fatty acids, isolated from plasma, were analysed as trimethylaminoethyl ester (quaternary ammonium) derivatives. Analysis time was 2.5 h and sample requirement was 10 microl of plasma. Good agreement with GC-MS methods for the levels of pristanic and phytanic acids, C26:0/C22:0 and C24:0/C22:0 ratios were obtained for 12 plasma samples from peroxisomal disorder patients and a set of controls.  相似文献   

11.
An equimolar mixture of phosphatidylserine and (dioleoyl)phosphatidylethanolamine could substitute for brain cephalin preparations in the single stage prothrombin assay. However, no clot promoting activity was observed on the addition of any of the individual long chain fatty acid-containing phospholipids. Short chain fatty acid-containing phospholipids, such as diheptanoylphosphatidylcholine, diheptanoylphosphatidylethanolamine, diheptanoylphosphatidic acid, and dihexanoylphosphatidylcholine, or dihexanoylphosphatidylethanolamine were inhibitory under all conditions studied. Similar effects of these two general classes of phospholipids were observed in a two-stage thrombin generation system, in which a mixture of bovine Factor Xa, Factor Va, and Ca2+ were interacted with prothrombin.In the presence of 25 mM Ca2+, dioleoylphosphatidic acid or brain phosphatidylserine alone, and with other long chain phospholipids, formed complexes with bovine plasma prothrombin. On the other hand, dioleoyl-, diheptanoyl- or dihexanoylphosphatidylcholine under comparable conditions showed no binding to prothrombin. There appeared to be a small degree of binding of diheptanoylphosphatidic acid to prothrombin, but it was insufficient to cause any significant change in apparent molecular weight of prothrombin. A mixture of prothrombin, Factor V, diheptanoylphosphatidic acid/diheptanoylphosphatidylcholine and Ca2+ eluted in the void volume of Sephadex G-200, but showed a much reduced coagulant activity. Though a net negative charge on the phospholipid surface is required for phospholipid-protein interactions, this does not necessarily promote coagulant activity.Bile acids and bile salts, such as cholic acid, deoxycholic acid, taurocholic acid, glycocholic acid, lithocholic acid and dehydrocholic acid, exerted varying levels of stimulation on the prothrombin assay and thrombin generation system, but were not as effective as the phospholipids. Interestingly, no interaction of these bile acids or salts with prothrombin was noted in the presence of Ca2+. The results of these experiments suggest that negatively charged micelles per se are not sufficient for binding alone and that other chemical and physical characteristics of phospholipids are of prime importance.  相似文献   

12.
13.
We report the production of two very long chain polyunsaturated fatty acids, arachidonic acid (AA) and eicosapentaenoic acid (EPA), in substantial quantities in a higher plant. This was achieved using genes encoding enzymes participating in the omega3/6 Delta8 -desaturation biosynthetic pathways for the formation of C20 polyunsaturated fatty acids. Arabidopsis thaliana was transformed sequentially with genes encoding a Delta9 -specific elongating activity from Isochrysis galbana, a Delta8 -desaturase from Euglena gracilis and a Delta5 -desaturase from Mortierella alpina. Instrumental in the successful reconstitution of these C20 polyunsaturated fatty acid biosynthetic pathways was the I. galbana C18-Delta9 -elongating activity, which may bypass rate-limiting steps present in the conventional Delta6 -desaturase/elongase pathways. The accumulation of EPA and AA in transgenic plants is a breakthrough in the search for alternative sustainable sources of fish oils.  相似文献   

14.
2-Hydroxyfatty acids, constituents of brain cerebrosides and sulfatides, were previously reported to be degraded by an alpha-oxidation system, generating fatty acids shortened by one carbon atom. In the current study we used labeled and unlabeled 2-hydroxyoctadecanoic acid to reinvestigate the degradation of this class of lipids. Both in intact and broken cell systems formate was identified as a main reaction product. Furthermore, the generation of an n-1 aldehyde was demonstrated. In permeabilized rat hepatocytes and liver homogenates, studies on cofactor requirements revealed a dependence on ATP, CoA, Mg(2+), thiamine pyrophosphate, and NAD(+). Together with subcellular fractionation data and studies on recombinant enzymes, this led to the following picture. In a first step, the 2-hydroxyfatty acid is activated to an acyl-CoA; subsequently, the 2-hydroxy fatty acyl-CoA is cleaved by 2-hydroxyphytanoyl-CoA lyase, to formyl-CoA and an n-1 aldehyde. The severe inhibition of formate generation by oxythiamin treatment of intact fibroblasts indicates that cleavage through the thiamine pyrophosphate-dependent 2-hydroxyphytanoyl-CoA lyase is the main pathway for the degradation of 2-hydroxyfatty acids. The latter protein was initially characterized as an essential enzyme in the peroxisomal alpha-oxidation of 3-methyl-branched fatty acids such as phytanic acid. Our findings point to a new role for peroxisomes in mammals, i.e. the breakdown of 2-hydroxyfatty acids, at least the long chain 2-hydroxyfatty acids. Most likely, the more abundant very long chain 2-hydroxyfatty acids are degraded in a similar manner.  相似文献   

15.
Very long chain fatty alcohols obtained from plant waxes and beeswax have been reported to lower plasma cholesterol in humans. This review discusses nutritional or regulatory effects produced by wax esters or aliphatic acids and alcohols found in unrefined cereal grains, beeswax, and many plant-derived foods. Reports suggest that 5-20 mg per day of mixed C24-C34 alcohols, including octacosanol and triacontanol, lower low-density lipoprotein (LDL) cholesterol by 21%-29% and raise high-density lipoprotein cholesterol by 8%-15%. Wax esters are hydrolyzed by a bile salt-dependent pancreatic carboxyl esterase, releasing long chain alcohols and fatty acids that are absorbed in the gastrointestinal tract. Studies of fatty alcohol metabolism in fibroblasts suggest that very long chain fatty alcohols, fatty aldehydes, and fatty acids are reversibly inter-converted in a fatty alcohol cycle. The metabolism of these compounds is impaired in several inherited human peroxisomal disorders, including adrenoleukodystrophy and Sj?gren-Larsson syndrome. Reports on dietary management of these diseases confirm that very long chain fatty acids (VLCFA) are normal constituents of the human diet and are synthesized endogenously. Concentrations of VLCFA in blood plasma increase during fasting and when children are placed on ketogenic diets to suppress seizures. Existing data support the hypothesis that VLCFA exert regulatory roles in cholesterol metabolism in the peroxisome and also alter LDL uptake and metabolism.  相似文献   

16.
Quantification of pristanic acid, phytanic acid, and very long chain fatty acids (i.e., hexacosanoic, tetracosanoic, and docosanoic acids) in plasma is the primary method for investigateing a multitude of peroxisomal disorders (PDs). Typically based on GC-MS, existing methods are time-consuming and laborious. In this paper, we present a rapid and specific liquid chromatography tandem mass spectrometric method based on derivatization with 4-[2-(N,N-dimethylamino)ethylaminosulfonyl]-7-(2-aminoethylamino)-2,1,3-benzoxadiazole (DAABD-AE). Derivatization was undertaken to improve the poor mass spectrometric properties of these fatty acids. Analytes in plasma (20 mul) were hydrolyzed, extracted, and derivatized with DAABD-AE in approximately 2 h. Derivatives were separated on a reverse-phase column and detected by positive-ion electrospray ionization tandem mass spectrometry with a 5 min injection-to-injection time. Calibration plots were linear over ranges that cover physiological and pathological concentrations. Intraday (n = 12) and interday (n = 10) variations at low and high concentrations were less than 9.2%. Reference intervals in normal plasma (n = 250) were established for each compound and were in agreement with the literature. Using specimens from patients with established diagnosis (n = 20), various PDs were reliably detected. In conclusion, this method allows for the detection of at least nine PDs in a 5 min analytical run. Furthermore, this derivatization approach is potentially applicable to other disease markers carrying the carboxylic group.  相似文献   

17.
Skeletal muscle cultures from a patient with the rare disease adrenomyeloneuropathy (AMN), challenged by the addition of an extra amount of docosanoic or hexacosanoic acid to the usual growth medium, accumulated much more of these fatty acids into several lipid classes than did control patient cultures. Triglycerides were particularly affected. These experiments are the first demonstrating an enhanced capacity of AMN cultured tissue to accumulate medium-derived fatty acids into cellular lipid. Cultured human skeletal muscle represents a new model system for evaluating the metabolic defect which results in the pathological accumulation of very-long-chain fatty-acids in AMN patients.  相似文献   

18.
The activity of fatty acid synthetase (FAS) from Vibrio sp. strain ABE-1 required the presence of acyl carrier protein and was completely inhibited by thiolactomycin, an inhibitor specific for a type II FAS. These observations indicate that this enzyme is a type II FAS. Analysis by gas-liquid chromotography of the reaction products synthesized in vitro from [2-14C]malonyl-CoA by the partially purified FAS revealed, in addition to 16-and 18-carbon fatty acids which are normal constituents of this bacterium, the presence of fatty acids with very long chains. These fatty acids were identified as saturated and mono-unsaturated fatty acids with 20 up to as many as 30 carbon atoms. The longest fatty acids normally found in this bacterium contain 18-carbon atoms. These results suggest that the FAS from Vibrio sp. strain ABE-1 has potentially the ability to synthesize fatty acids with very long chains.Abbreviations ACP acyl carrier protein - FAME fatty acid methyl ester - FAS fatty acid synthetase - FID flame ionization detection - GLC gas-liquid chromatography - TLC thin-layer chromatography - In designations of fatty acids, such as 16:0, 16:1, etc the colon separates the number that denotes the number of carbon atoms and the number that denotes the number of double bonds, respectively, in the molecule - 16:0-CoA CoA ester of 16:0  相似文献   

19.
Whereas the physiological significance of microsomal fatty acid elongation is generally appreciated, its molecular nature is poorly understood. Here, we describe tissue-specific regulation of a novel mouse gene family encoding components implicated in the synthesis of very long chain fatty acids. The Ssc1 gene appears to be ubiquitously expressed, whereas Ssc2 and Cig30 show a restricted expression pattern. Their translation products are all integral membrane proteins with five putative transmembrane domains. By complementing the homologous yeast mutants, we found that Ssc1 could rescue normal sphingolipid synthesis in the sur4/elo3 mutant lacking the ability to synthesize cerotic acid (C(26:0)). Similarly, Cig30 reverted the phenotype of the fen1/elo2 mutant that has reduced levels of fatty acids in the C(20)-C(24) range. Further, we show that Ssc1 mRNA levels were markedly decreased in the brains of myelin-deficient mouse mutants known to have very low fatty acid chain elongation activity. Conversely, the dramatic induction of Cig30 expression during brown fat recruitment coincided with elevated elongation activity. Our results strongly implicate this new mammalian gene family in tissue-specific synthesis of very long chain fatty acids and sphingolipids.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号