首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Both alpha- and beta-adrenergic receptors have been identified in the human myometrium by radioligand binding. Both adrenergic receptor subclasses have been shown to mediate the contractile response of the uterus upon catecholamine stimulation: alpha-adrenergic receptors cause uterine contraction while beta-adrenergic receptors induce relaxation. We have identified alpha 1- and alpha 2-adrenergic receptors in myometrial membranes using the newly developed radiolabelled specific antagonists [3H]-prazosin and [3H]-rauwolscine. This enabled us to characterize both receptor subclasses individually. Beta adrenergic receptors were identified using the radiolabelled antagonist (-)-[3H]-dihydroalprenolol. Binding of radioligands to the myometrial membrane receptors was rapid, readily reversible, of high affinity and stereoselective. The total number of alpha 1-, alpha 2- and beta-receptors was determined by Scatchard analysis of radioligand saturation binding and the beta/beta 2-receptor ratio was determined by computer analysis of the beta 2-selective antagonist ICI 118 551) (-)-[3H]-dihydroalprenolol competition binding curves. This enabled us to study the regulation of both alpha- and beta-receptor subclasses under various physiological and pharmacological conditions in the human, i.e., during different phases of the menstrual cycle, in postmenopausal women and during depo-progestin (Medroxyprogesterone acetate) therapy. Only the alpha 2- and beta 1-adrenergic receptor concentrations were found to be subjected to gonadal steroid regulation. The number of alpha 2- and beta 1-adrenergic receptors increased concomitantly with circulating plasma oestradiol levels. This effect was counteracted by progesterone. The number of alpha 1- and beta 2-adrenergic receptors was unaffected by the gonadal steroid environment. These results are an example of the heteroregulation of membrane receptors by oestrogens and progesterone and cast new light on the regulatory mechanisms involved in uterine contractility in the human.  相似文献   

2.
An iodoazido[125I]prazosin analogue was employed to photoaffinity label alpha 1-adrenergic receptors in rat liver plasma membranes. Labeled proteins were separated by gradient polyacrylamide gel electrophoresis in sodium dodecyl sulfate, and (-)-epinephrine displacement of [3H]prazosin binding was concurrently measured in the presence or absence of guanosine 5'-O-(gamma-thiotriphosphate) (GTP[gamma S]). Inclusion of EGTA and/or proteinase inhibitors during membrane preparation and incubation increased the effect of GTP[gamma S] on alpha 1-adrenergic agonist binding and this could be correlated with increased concentrations of a 78 kDa photoaffinity labeled protein. In contrast, omission of EGTA or addition of exogenous Ca2+ diminished or abolished the effect of GTP[gamma S] on binding and caused loss of the 78 kDa form and the appearance of lower molecular weight labeled proteins. Age-dependent differences in GTP[gamma S] effects on alpha 1-adrenergic agonist binding were abolished when membranes were prepared and incubated in the presence of EGTA and proteinase inhibitors. However, the 78 kDa photoaffinity labeled protein observed in adult rats (over 225 g body weight) was not apparent in membranes from younger rats (50-75 g), even when the membranes were prepared and incubated in the presence of EGTA and proteinase inhibitors. Instead, a 68 kDa species was the major labeled protein. These data suggest that GTP effects on alpha 1-adrenergic agonist binding in rat liver membranes require the presence of either a 68 or 78 kDa alpha 1-adrenergic binding protein. Failure to inhibit proteolysis in the membranes leads to the generation of lower-molecular-weight binding proteins and the loss of GTP effects on alpha 1-adrenergic agonist binding, although [3H]prazosin binding characteristics are not changed. It is suggested that either the proteolyzed forms of the alpha 1-adrenergic receptor are unable to couple to a putative guanine nucleotide-binding regulatory protein, or that such a protein is concurrently proteolyzed and is thus unable to couple to the receptor.  相似文献   

3.
Ontogeny of alpha 1- and beta-adrenergic receptors in rat lung   总被引:2,自引:0,他引:2  
The binding characteristics of the alpha 1-selective adrenergic ligand [3H]-prazosin were determined in particulate membranes of rat lung from day 18 of gestation to adulthood. Specific binding was present at all ages studied, was reversible and inhibition of specific binding by agonists followed the order of potency: (-)-epinephrine = (-)-norepinephrine much greater than (-)-isoproterenol greater than (+)-norepinephrine. Inhibition by antagonists followed the order of potency: prazosin greater than WB4101, much greater than yohimbine. Binding capacity increased during the neonatal period from 52 +/- 9 fmoles x mg-1 protein in lung preparations on day 18 of a 21 day gestation increasing to 105 +/- 4 fmoles x mg-1 protein (mean +/- SE) by postnatal day 15. Binding activity decreased thereafter, reaching adult levels by 28 days of postnatal age, 62 +/- 3 fmoles x mg-1 protein. This pattern of alpha 1-adrenergic receptor density was distinct from that of beta-adrenergic receptors identified in rat lung membrane with the beta- adrenergic antagonist, (-)-[3H]dihydroalprenolol ((-)-[3H]DHA). (-)-[3H]DHA binding increased dramatically during this same time period, from 46 +/- 4 fmoles x mg-1 protein on day 18 of gestation to 496 +/- 44 fmoles x mg-1 protein in the adult lung. Affinity for [3H]-prazosin and (-)-[3H]DHA did not change with age. Pulmonary alpha 1-adrenergic receptors are present as early as 18 days of gestation in the rat and alpha 1-adrenergic receptor density is maximal by 15 days of postnatal age. The timing of the changes in alpha 1-adrenergic receptors correlates with the timing of increased sympathetic innervation of the developing rat lung and is distinct from that of beta-adrenergic receptor sites.  相似文献   

4.
Computer-assisted quantitative analysis of radioligand binding to rat cortical S2 serotonin receptors indicates the existence of two affinity states of the same receptor population. Monophasic antagonist competition curves for [3H]ketanserin-labelled sites suggest a uniform population of receptors with one affinity state for antagonists. Biphasic competition curves of agonists suggest that agonists discriminate high- and low-agonist-affinity forms of the S2 receptors. The affinities of agonists for the high- and low-affinity states, and the apparent percentages of high agonist-affinity forms varies with different agonists. The guanine nucleotides GTP and guanyl-5'-imido-diphosphate [Gpp(NH)p], as well as divalent cations, modulate the proportion of the sites with high affinity for agonists as evidenced by their ability to shift the agonist competition curves for [3H]ketanserin-labelled S2 receptors. GTP and Gpp(NH)p effects appear to be agonist-specific, as they do not affect antagonist competition for [3H]ketanserin-labelled S2 receptors, or [3H]ketanserin binding to S2 receptors. ATP and ADP have little or no effect on the binding properties of S2 serotonin receptors, whereas GDP is less potent than GTP. The presence of these specific nucleotide effects are the first evidence suggesting involvement of a guanine nucleotide-binding protein in the mechanism of agonist interaction with the S2 serotonin receptor. In general, the binding properties of [3H]ketanserin-labelled S2 serotonin receptors strongly resemble those of adenylate-cyclase coupled receptors such as the beta-adrenergic, the alpha 2-receptor, and the D-2 dopamine receptor. This may indicate the S2 serotonin receptor is coupled to adenylate cyclase activity, through a GTP binding protein.  相似文献   

5.
The existence of specific alpha 2-adrenergic receptor sites has been shown in human retinoblastoma (Y-79) and neuroblastoma (SH-SH5Y) cells using direct radioligand binding. [3H]Rauwolscine, a selective alpha 2-adrenergic receptor antagonist, exhibited high affinity, saturable binding to both Y-79 and SH-SY5Y cell membranes. The binding of alpha 1 specific antagonist, [3H]Prazocine, was not detectable in either cell type. Competition studies with antagonists yielded pharmacological characteristics typical of alpha 2-adrenergic receptors: rauwolscine greater than yohimbine greater than phentolamine greater than prazocine. Based on the affinity constants of prazocine and oxymetazoline, it appears that Y-79 cells contain alpha 2A receptor, whereas SH-SY5Y cells probably represent a mixture of alpha 2A and alpha 2B receptors. alpha 2-agonists clonidine and (-)epinephrine inhibition curves yielded high and low affinity states of the receptor in SH-SY5Y cells. Gpp(NH)p and sodium ions reduced the proportion of high affinity sites of alpha 2 receptors. These two neuronal cell lines of human origin would prove useful in elucidating the action and regulation of human alpha 2-adrenergic receptors and their interaction with other receptor systems.  相似文献   

6.
The distribution of alpha 1-adrenergic receptors in rat liver subcellular fractions was studied using the alpha 1-adrenergic receptor ligand [3H]prazosin. The highest number of [3H]prazosin binding sites was found in a plasma membrane fraction followed by 2 Golgi and a residual microsomal fraction, the numbers of binding sites were 1145, 845, 629 and 223 fmol/mg protein, respectively. When the binding in these fractions was compared with the activity of plasma membrane 'marker' enzymes in the same fractions a relative enrichment of [3H]prazosin binding sites was found in the residual microsomes and one of the Golgi fractions. Photoaffinity labelling with 125I-arylazidoprazosin in combination with SDS-polyacrylamide gel electrophoresis revealed the specific binding to 40 and 23 kDa entities in a Golgi fraction, while in plasma membranes the binders had an apparent molecular mass of 36 and 23 kDa. When [3H]prazosin was injected in vivo into rat portal blood followed by subcellular fractionation of liver, a pattern of an initial rapid decline and thereafter a slow decline of radioactivity was noted in all fractions. Additionally, in the two Golgi fractions a transient accumulation of radioactivity occurred between 5 and 10 min after the injection. The ED50 values for displacement of [3H]prazosin with adrenaline was lowest in the plasma membrane fraction, followed by the residual microsomes and Golgi fractions, the values were 10(-6), 10(-5) and 10(-4) mol/l, respectively. On the basis of lack of correlation between distribution of alpha 1-adrenergic antagonist binding and adenylate cyclase activity, differences in the molecular mass of alpha 1-adrenergic antagonist binders, differences in the kinetics of in vivo binding and accumulation of [3H]prazosin and also differences in agonist affinity between plasma membrane and Golgi fractions, it is concluded that alpha 1-adrenergic receptors are localized to low-density intracellular membranes involved in receptor biosynthesis and endocytosis.  相似文献   

7.
The effects of guanine nucleotides on the hepatic alpha 1-adrenergic receptor were studied using norepinephrine (NE) displacement of [3H]prazosin binding to rat liver plasma membranes. Nonhydrolyzable GTP analogues caused large rightward shifts of norepinephrine displacement curves of [3H]prazosin binding in EGTA-treated membranes, but only small shifts in membranes prepared with Ca2+. The effect of a brief Ca2+ exposure on NE displacement curves was not reversed by adding excess EGTA prior to binding experiments. Analysis of the curves showed that the EGTA membranes had an increased number of high affinity agonist sites (Kd, 42 nM) and that guanyl-5'-yl imidodiphosphate (GppNHp) converted these to low affinity sites (Kd, 1039 nM). When binding was carried out at 2 degrees C, the norepinephrine displacement curves were shifted to the left, and GppNHp was without effect. Neither EGTA, Ca2+, nor 2 degrees C treatment altered [3H]prazosin binding per se. Attempts were made to differentiate the potency order of GTP analogues which alter glucagon receptor binding (presumably mediated by the stimulatory GTP-binding protein, Na, of the adenylate cyclase system) from the potency order of GTP analogues which alter alpha 1-receptor agonist binding (presumably mediated by a yet uncharacterized GTP-binding protein which some have speculated may be distinct from Ns). However, the potency series of GTP analogues to alter norepinephrine binding was GTP gamma S greater than GppNHp greater than or equal to GTP greater than or equal to GDP greater than or equal to GppCHp greater than GMP (where GTP gamma S represents guanosine 5'-O-(thiotriphosphate) and GppCHp represents guanyl-5'-yl (beta, gamma-methylene)diphosphonate) and was identical to that for inhibition of [125I]iodoglucagon binding. The ability of GppNHp to alter norepinephrine displacement of [3H]prazosin binding increased with the age of the rat from which membranes were prepared. This was due to the fact that juvenile rats (50-75 g) had few alpha 1-receptors in the high affinity state, whereas in old rats (430-490 g) more of the receptors were in this form. Age has previously been shown to increase alpha 1-adrenergic stimulation of cAMP in isolated hepatocytes (Morgan, N.G., Blackmore, P. F., and Exton, J. H. (1983) J. Biol. Chem. 258, 5103-5109) but did not affect the dose-response curves for norepinephrine-induced Ca2+ mobilization and phosphorylase activation in these cells. These data suggest that alpha 1-adrenergic receptors can become coupled to a guanine nucleotide-responsive moiety in hepatic plasma membranes and that this may be similar to Ns.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
[3H]Yohimbine, a potent alpha 2-adrenergic antagonist, was used to label the alpha-adrenergic receptors in membranes isolated from human platelets. Binding of [3H]yohimbine to platelet membranes appears to have all the characteristics of binding to alpha-adrenergic receptors. Binding reached a steady state in 2-3 min at 37 degrees C and was completely reversible upon the addition of excess phentolamine or yohimbine (both at 10(-5) M; t1/2 = 2.37 min). [3H]Yohimbine bound to a single class of noncooperative sites with a dissociation constant of 1.74 nM. At saturation, the total number of binding sites was calculated to be 191 fmol/mg protein. [3H]Yohimbine binding was stereo-specifically inhibited by epinephrine: the (-) isomer was 11-times more potent that the (+) isomer. Catecholamine agonists competed for the occupancy of the [3H]yohimbine-binding sites with an order of potency: clonidine greater than (-)-epinephrine greater than (-)-norepinephrine much greater than (-)-isoproterenol. The potent alpha-adrenergic antagonist, phentolamine, competed for the sites whereas the beta-antagonist, (+/-)-propranolol, was very weak inhibitor. 0.1 mM GTP reduced the binding affinity of the agonists, while producing no change in antagonist-binding affinity. Dopamine and serotonin competed only at very high concentrations. Similarly, muscarinic cholinergic ligands were also poor inhibitors of [3H]yohimbine binding. These results suggest that [3H]yohimbine binding to hunan platelet membranes is specific, rapid, saturable, reversible and, therefore, can be successfully used to label alpha 2-adrenergic receptors.  相似文献   

9.
R S Chang  V J Lotti 《Life sciences》1983,32(22):2603-2609
The beta-adrenergic antagonist, [3H]-dihydroalprenolol ([3H] DHA), binds to membranes prepared from the rat vas deferens in a specific and saturable manner. Scatchard and Hill plot analysis indicates a single class of binding sites with no evidence of cooperative interactions. The specific binding sites have a high affinity (Kd = 0.3 nM) and a maximal occupancy estimated to be 460 fmoles [3H]-DHA bound/g wet tissue weight. Beta-adrenergic agonists and/or antagonists inhibit [3H]-DHA binding to rat vas deferens membranes in a stereospecific manner and with a relative order of potency expected for beta-adrenergic receptors of the beta2 subtype. The receptor affinities of various beta-adrenergic antagonists in the rat vas deferens determined using inhibition of [3H]-DHA binding correlated with their receptor affinities determined physiologically using antagonism of isoproterenol-induced inhibition of neurogenic contractions in-vitro.  相似文献   

10.
Thyroid hormone regulation of beta-adrenergic receptor number.   总被引:27,自引:0,他引:27  
The effects of exogenous thyroid hormones (thyroxine and triiodothyronine) on beta-adrenergic receptors in the rat myocardium were investigated. The potent beta-adrenergic antagonist, (-)-[3H]dihydroalprenolol, was used to directly estimate the number and affinity of beta-adrenergic receptors in rat heart membranes from control and hyperthyroid rats. Cardiac membranes from hyperthyroid rats contained 196 +/- 7 fmol of (-)-[3H]dihydroalprenolol binding sites/mg of protein which was significantly (p less than 0.005) greater than the number of binding sites (89 +/- 5 fmol/mg of protein) present in control membranes. The equilibrium dissociation constant (KD) for the interaction of receptors with dihydroalprenolol was the same (2 to 15 nM) in membranes from control and hyperthyroid rats. Similarly, there was no significant difference between the control and hyperthyroid membranes in the affinity of the beta-adrenergic receptor binding sites for the beta-adrenergic agonist isoproterenol. The results of this study demonstrate that thyroid hormones can regulate the number of cardiac beta-adrenergic receptors. The increased numbers of receptors may be responsible, at least in part, for the enhanced catecholamine sensitivity of beta-adrenergic-coupled cardiac responses in the hyperthyroid state.  相似文献   

11.
The effects of guanine nucleotides on binding of 8-cyclopentyl-1,3-[3H]dipropylxanthine ([3H]DPCPX), a highly selective A1 adenosine receptor antagonist, have been investigated in rat brain membranes and solubilized A1 receptors. GTP, which induces uncoupling of receptors from guanine nucleotide binding proteins, increased binding of [3H]DPCPX in a concentration-dependent manner. The rank order of potency for different guanine nucleotides for increasing [3H]DPCPX binding was the same as for guanine nucleotide-induced inhibition of agonist binding. Therefore, a role for a guanine nucleotide binding protein, e.g., Gi, in the regulation of antagonist binding is suggested. This was confirmed by inactivation of Gi by N-ethylmaleimide (NEM) treatment of membranes, which resulted in an increase in [3H]DPCPX binding similar to that seen with addition of GTP. Kinetic and equilibrium binding studies showed that the GTP- or NEM-induced increase in antagonist binding was not caused by an affinity change of A1 receptors for [3H]DPCPX but by an increased Bmax value. Guanine nucleotides had similar effects on membrane-bound and solubilized receptors, with the effects in the solubilized system being more pronounced. In the absence of GTP, when most receptors are in a high-affinity state for agonists, only a few receptors are labeled by [3H]DPCPX. It is suggested that [3H]DPCPX binding is inhibited when receptors are coupled to Gi. Therefore, uncoupling of A1 receptors from Gi by guanine nucleotides or by inactivation of Gi with NEM results in an increased antagonist binding.  相似文献   

12.
Photoaffinity labeling of alpha 1-adrenergic receptors of rat heart   总被引:1,自引:0,他引:1  
The photoaffinity probe [125I]aryl azidoprazosin was used to examine structural aspects of rat left ventricular alpha 1-adrenergic receptor. Autoradiography of sodium dodecyl sulfate-polyacrylamide gel electrophoresis-resolved proteins from photoaffinity-labeled membranes revealed a specifically labeled protein of mass 77 kDa. Adrenergic drugs competed with the photoaffinity probe for binding to the receptor in a manner expected of an alpha 1-adrenergic antagonist. Because the autoradiographic pattern was unaltered by incubating labeled membranes in gel sample buffer containing high concentrations of reducing agents, the binding component of the cardiac alpha 1-adrenergic receptor appears to be a single polypeptide chain. The photoaffinity probe specifically labeled a single protein of approximately 68 kDa in membranes of cardiac myocytes prepared from rat left ventricles. The role played by sulfhydryls in receptor structure and function was also studied. Dithiothreitol (DTT) inhibited [3H]prazosin binding to left ventricular membranes and altered both the equilibrium dissociation constant and maximal number of [3H]prazosin-binding sites but not the ability of the guanine nucleotide guanyl-5'-yl imidodiphosphate to decrease agonist affinity for the receptors. When photoaffinity-labeled membranes were incubated with 40 mM DTT for 30 min at room temperature, two specifically labeled proteins of 77 and 68 kDa were identified. The DTT-induced conversion of the 77-kDa protein to 68 kDa was irreversible with washing, but the effect of DTT on [3H]prazosin binding was reversible. Both 77- and 68-kDa proteins were observed with liver membranes even in the absence of reducing agent. We suggest that the DTT-induced conversion of the 77-kDa protein to 68 kDa is due to enhancement in protease activity by the reductant. These results document that the cardiac alpha 1-adrenergic receptor is a 77-kDa protein, similar in mass to the receptor in liver and other sites. Proteolysis likely accounts for lower Mr forms of this receptor found in cardiac myocytes and in previous publications on hepatic alpha 1-receptors.  相似文献   

13.
The hippocampal formation has been extensively research in terms of its putative neurotransmitters, anatomical connections, and behavioral relevance. An aspect of importance is the assessment of apparent neurotransmitter receptors by using receptor binding assays. In the present study, such assays were done in vitro to investigate alpha 1-adrenergic, alpha 2-adrenergic, beta-adrenergic, muscarinic cholinergic, benzodiazepine, and opiate receptors in the rat hippocampal formation. The corresponding radioligands for these receptors were [3H]prazosin, [3H]p-aminoclonidine, [3H]dihydroalprenolol, [3H]quinuclidinyl benzilate, [3H]flunitrazepam, and [3H]naloxone. An analysis of the binding parameters for the ligands indicated saturable binding of a high affinity and the following rank order of maximal binding capacities: [3H]flunitrazepam greater than [3H]quinuclidinyl benzilate greater than [3H]naloxone greater than [3H]p-aminoclonidine greater than [3H]prazosin greater than [3H]dihydroalprenolol. Competition experiments with pharmacologic agonists and antagonists confirmed the specificity of each ligand. The results are integrated with information on other types of receptors and with neurotransmitter concentrations, and discussed in terms of hippocampal function.  相似文献   

14.
A1 adenosine receptors were labeled in rat brain sections with the antagonist [3H]8-cyclopentyl-1,3-dipropylxanthine ([3H]DPCPX) and visualized at the light microscopic level using autoradiography. The specific binding of [3H]DPCPX to the sections showed the pharmacological characteristics of A1 adenosine receptors and was accompanied by very low levels of nonspecific binding. Whereas GTP had no significant effect on [3H]DPCPX binding to rat brain membranes, the addition of 100 microM GTP increased the apparent affinity of [3H]DPCPX to tissue sections fivefold (from 1.83 to 0.35 nM), enhancing it to the affinity measured in membranes. However, GTP altered neither the binding capacity nor the distribution of binding sites in tissue sections. It is suggested that a competitive antagonism with endogenous adenosine explains the lower affinity of [3H]DPCPX in the absence of GTP. The autoradiographic pattern of [3H]DPCPX binding was characteristic for A1 adenosine receptors. Distinct labeling of the different layers of the cerebellar cortex was shown by photomicrographs generated with the coverslip technique. In addition, several fiber tracts were found to be labeled. The high selectivity for A1 adenosine receptors and low nonspecific binding of [3H]DPCPX, the ability to produce high-resolution autoradiograms, together with the fact that the effects of endogenous adenosine can be eliminated by the addition of GTP make [3H]DPCPX a very useful tool in the autoradiographic study of A1 adenosine receptors.  相似文献   

15.
The mammalian beta 2-adrenergic receptor: purification and characterization   总被引:8,自引:0,他引:8  
The beta 2-adrenergic receptors from hamster, guinea pig, and rat lungs have been solubilized with digitonin and purified by sequential Sepharose-alprenolol affinity and high-performance steric-exclusion liquid chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography of iodinated purified receptor preparations reveal a peptide with an apparent Mr of 64 000 in all three systems that coincides with the peptide labeled by the specific beta-adrenergic photoaffinity probe (p-azido-m-[125I]iodobenzyl)carazolol. A single polypeptide was observed in all three systems, suggesting that lower molecular weight peptides identified previously by affinity labeling or purification in mammalian systems may represent proteolyzed forms of the receptor. Purification of the beta-adrenergic receptor has also been assessed by silver staining, iodinated lectin binding, and measurement of the specific activity (approximately 15 000 pmol of [3H]dihydroalprenolol bound/mg of protein). Overall yields approximate 10% of the initial crude particulate binding, with 1-3 pmol of purified receptor obtained/g of tissue. The purified receptor preparations bind agonist and antagonist ligands with the expected beta 2-adrenergic specificity and stereoselectivity. Peptide mapping and lectin binding studies of the hamster, guinea pig, and rat lung beta 2-adrenergic receptors reveal significant similarities suggestive of evolutionary homology.  相似文献   

16.
The stimulations of cyclic AMP formation and adenylate cyclase activity by glucagon and isoproterenol were both found to be highest in neonatal rat hepatocytes and to decrease during development. Adult hepatocytes still showed a considerable response to glucagon, but a negligible response to isoproterenol. The decrease in cyclic AMP formation during development can be explained in the case of the response to beta-adrenergic agonist as due to decrease of its receptor number, judging from binding of [125I]iodocyanopindolol to purified plasma membranes. But in the case of the glucagon response, the decrease in the response may be due to change of post-receptor components of the adenylate cyclase system, because the receptor number tended to increase during development, as shown by binding of [125I]iodoglucagon. Similarly, alpha 1-adrenergic receptors increased in number during development, but their IC50 value did not change, as measured by binding of [3H]prazosin to plasma membranes. Previous studies on primary cultures of adult rat hepatocytes showed that the beta-adrenergic response and its receptor number increased markedly during short-term culture (Nakamura, T., Tomomura, A., Noda, C., Shimoji, M., & Ichihara, A. (1983) J. Biol. Chem. 258, 9283-9289). However, in this work the amount of alpha 1-adrenergic receptor of adult rat hepatocytes was found to decrease by one third during 1-2 days culture. Therefore, changes of alpha 1- and beta-adrenergic receptors during development of rat liver and during primary culture of adult rat hepatocytes were reciprocal, although the directions of change in the two conditions were opposite. The additions of various hormones to primary cultures of adult rat hepatocytes did not affect the reciprocal changes of adrenergic receptors, suggesting that these hormones did not regulate the changes of the receptors.  相似文献   

17.
Isolation of an endogenous clonidine-displacing substance from rat brain   总被引:3,自引:0,他引:3  
D Atlas  Y Burstein 《FEBS letters》1984,170(2):387-390
An endogenous substance which specifically displaces clonidine, yohimbine and rauwolscine from rat brain alpha 2-adrenergic receptors, has been isolated. The new compound, designed clonidine-displacing-substance (CDS), has been partially purified by ion exchange chromatography, zone electrophoresis and high performance liquid chromatography (HPLC). CDS binds specifically to alpha 2-adrenergic receptors by competing with either alpha 2-adrenergic agonists or alpha 2-antagonists, but has no effect on the specific binding of [3H]prazosin to alpha 1-adrenergic receptors in rat brain membranes. In the course of isolation, CDS was shown to be neither the endogenous neurotransmitter (-)norepinephrine (NE) nor the guanyl nucleotide GTP which lowers the specific binding of alpha 2-agonists to the alpha 2-adrenergic receptors.  相似文献   

18.
The G-protein involved in alpha 1-adrenergic receptor signaling was identified using two different approaches. First, purified rat liver membranes were incubated with [alpha-32P]GTP in the absence or presence of the adrenergic agonist (-)-epinephrine, or in the presence of GTP. After UV irradiation, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and autoradiography, covalent labeling of a number of proteins was apparent and could be blocked by unlabeled GTP. In the preparation treated with (-)-epinephrine alone, labeling of a 74-kDa species was markedly enhanced. Enhanced labeling of 40-50-kDa species was also observed. Labeling of the 74-kDa protein was also evident in similarly treated membranes prepared from FRTL-5 thyroid cells, which contain abundant alpha 1-adrenergic receptors, but not in those prepared from turkey erythrocytes or NIH 3T3 fibroblasts, which are essentially devoid of alpha 1-receptors. Second, alpha 1-agonist-receptor-G-protein ternary complex formation was induced by incubating purified rat liver membranes with (-)-epinephrine. Rauwolscine (10(-7) M) and (+/-)-propranolol (10(-6) M) were included to prevent activation of alpha 2- and beta-adrenergic receptors by (-)-epinephrine. The ternary complex of hormone, receptor, and G-protein was solubilized, partially purified using heparin- and wheat germ agglutinin-agarose, and reconstituted into phospholipid vesicles. The vesicles displayed agonist-stimulated guanosine 5'-O-3-thiotriphosphate (GTP gamma S) binding that was blocked by phentolamine (10(-4) M). By contrast, stimulation of GTP gamma S binding was not evident when the vesicles were incubated with the beta-agonist, isoproterenol. Incubation of the vesicles with [alpha-32P]GTP or [alpha-32P]azido-GTP in the presence of (-)-epinephrine, followed by photolysis, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and autoradiography, resulted in the covalent labeling of a 74-kDa protein. Labeling of this protein could be blocked by preincubation with phentolamine or unlabeled GTP. These findings provide direct evidence for the coupling of the alpha 1-adrenergic receptor to a previously uncharacterized G-protein (termed Gh), which has an apparent molecular mass of approximately 74 kDa.  相似文献   

19.
A simple large-scale purification of alpha 2-adrenergic receptor-enriched membranes from human platelets is described. Binding of the antagonist [3H]yohimbine is enriched 3-5-fold compared to a crude membrane fraction. Binding of low concentrations of the partial agonist 3-H-rho-aminoclonidine is increased 15-20-fold due to a higher binding affinity for the purified membranes. A soluble inhibitor of 3H-rho-aminoclonidine binding to purified membranes is found even in thrice-washed crude platelet membranes. The guanine nucleotides GDP and GTP are found to account for this inhibitory activity. Forskolin-stimulated adenylate cyclase activity is also enriched in the purified membrane fraction. Adenylate cyclase activity is inhibited by alpha 2-agonist to a comparable extent in all membrane fractions. This membrane preparation should prove useful in studies of alpha 2-adrenergic receptor mechanisms.  相似文献   

20.
[3H]Dihydroergocryptine ([3H]DHE) was shown to bind to sites in membranes from neuroblastoma X glioma hybrid cells (NG 108-15) that had the characteristics expected of alpha-adrenergic receptors. The binding was saturable with 0.3 pmol [3H]DHE bound per mg of protein and of high affinity, with an apparent dissociation constant (KD) of 1.8 nM. The specificity of the binding site for various ligands was more similar to that of alpha 2 receptors than to that of alpha 1. No specific binding of [3H]WB-4101 was found in the membranes derived from NG 108 cells. This finding also indicated that the [3H]DHE binding site in the cell is the alpha 2 receptor. GTP lowered the affinity of agonists for the [3H]DHE binding site, although the nucleotide hardly affected the affinity of antagonists including [3H]DHE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号