首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The involvement of mitochondrial glycerophosphate dehydrogenase (mGPDH) has previously been established in the production of ROS in prostate cancer cell lines (LNCaP, DU145, PC3 and CL1). The current study demonstrates that the mRNA level of mGPDH in prostate cancer cells is 3.3-8.9-fold higher compared to the normal prostate epithelial cell line, PNT1A. This is consistent with the enzymatic activity and protein level of mGPDH. However, cytochrome c oxidase (COX) activity is 2.9-3.2-fold down-regulated in androgen-independent prostate cancer cell lines. The level of antioxidant enzymes, catalase, MnSOD and CuZnSOD are up-regulated in prostate cancer cell lines. Furthermore, it was observed that the activity of mGPDH is significantly higher in liver tissues from all mice with cancer compared to liver tissues from control mice. These data suggest that the up-regulation of mGPDH, due to a highly glycolytic environment, contributes to the overall increase in ROS generation and may result in the progression of the cancer.  相似文献   

2.
The involvement of mitochondrial glycerophosphate dehydrogenase (mGPDH) has previously been established in the production of ROS in prostate cancer cell lines (LNCaP, DU145, PC3 and CL1). The current study demonstrates that the mRNA level of mGPDH in prostate cancer cells is 3.3–8.9-fold higher compared to the normal prostate epithelial cell line, PNT1A. This is consistent with the enzymatic activity and protein level of mGPDH. However, cytochrome c oxidase (COX) activity is 2.9–3.2-fold down-regulated in androgen-independent prostate cancer cell lines. The level of antioxidant enzymes, catalase, MnSOD and CuZnSOD are up-regulated in prostate cancer cell lines. Furthermore, it was observed that the activity of mGPDH is significantly higher in liver tissues from all mice with cancer compared to liver tissues from control mice. These data suggest that the up-regulation of mGPDH, due to a highly glycolytic environment, contributes to the overall increase in ROS generation and may result in the progression of the cancer.  相似文献   

3.
4.
Tissue distribution of the cytosolic and mitochondrial glycerol-3-phosphate dehydrogenase (cGPDH and mGPDH) activities in jerboa (Jaculus orientalis), a hibernator, shows the highest level of enzyme activity in skeletal muscle and brown adipose tissue, respectively. The effect of hibernation on cGPDH indicates an increase of activity in all tissues examined. In contrast, hibernation decreases mGPDH activity in all tissues, except skeletal muscle. The effect of thyroid hormones on GPDH activity was tissue specific: in kidneys, cGPDH activity doubled in euthermic jerboas treated with T4. In contrast, 6-n-propyl-2-thiouracil treatment provokes an increase of enzyme activity in brown adipose tissue, liver and brain. T4 treatment leads to a 2.7-fold increase in liver mGPDH activity. 6-n-propyl-2-thiouracil treatment decreases mGPDH activity in the skeletal muscle whereas the opposite effect was observed in brain. Dexamethasone stimulates cGPDH in all tissues examined, except skeletal muscle and kidneys. In the case of mGPDH activity, this increase was observed only for brown adipose tissue and brain. Our results suggest that hibernation, thyroid hormones and dexamethasone probably play a role in the regulation of cGPDH and mGPDH activities in jerboa. Our findings confirm that these enzymes are involved in metabolic adaptation to thermal stress in Jaculus orientalis.  相似文献   

5.
We studied the extent to which hormonally-induced mitochondrial glycerophosphate dehydrogenase (mGPDH) activity contributes to the supply of reducing equivalents to the mitochondrial respiratory chain in the rat liver. The activity of glycerophosphate oxidase was compared with those of NADH oxidase and/or succinate oxidase. It was found that triiodothyronine-activated mGPDH represents almost the same capacity for the saturation of the respiratory chain as Complex II. Furthermore, the increase of mGPDH activity induced by triiodothyronine correlated with an increase of capacity for glycerophosphate-dependent hydrogen peroxide production. As a result of hormonal treatment, a 3-fold increase in glycerophosphate-dependent hydrogen peroxide production by liver mitochondria was detected by polarographic and luminometric measurements.  相似文献   

6.
The regulation of the mitochondrial matrix enzyme, ornithine aminotransferase, by estrogen and triiodothyronine (T3) in rat kidney was examined using a cloned cDNA probe and in vitro translation of poly(A+) RNA. After a single, acute dose of either 17 beta-estradiol or T3, the rate of enzyme synthesis and the levels of translatable and hybridizable ornithine aminotransferase mRNA all increase in parallel. Levels of hybridizable mRNA were estimated by hybridization of randomly 32P-labeled RNA to filter-bound plasmid DNA. Maximal levels of induction by estrogen and T3 were about 15- and 3-fold, respectively. Lag times of at least 5 h and less than 3 h were observed for induction by T3 and estrogen. T3 and estrogen exert a synergistic effect in increasing ornithine aminotransferase mRNA levels. 16 h after T3 administration and 24 h after estrogen administration, a 1.6- and 13-fold increase in mRNA levels were observed. Both of these treatments in combination for the indicated time periods resulted in a 21-fold increase in ornithine aminotransferase mRNA. From the mRNA accumulation curves, half-lives of 10 to 14 h and 12 to 16 h were estimated for the mRNA after estrogen and T3 induction, respectively. These similar half-lives suggest that an increase in the rate of mRNA production is primarily responsible for the induction observed after estrogen administration.  相似文献   

7.
8.
9.
10.
The administration of N6,O2-dibutyryl cyclic AMP and theophylline to adrenalectomized rats results in an increase in the amount of functional mRNA coding for tyrosine aminotransferase that can be isolated from liver. The induction of this specific mRNA, as quantitated in a mRNA-dependent reticulocyte lysate system, and using poly(A)+ mRNA extracted from total tissue and polysomes, is very rapid. Within an hour after the intraperitoneal injection of the cyclic AMP derivative there is a 5- to 7-fold elevation of functional mRNA coding for tyrosine aminotransferase (mRNATAT), and by 3 h this has returned to basal levels. In contrast, the 4- to 5-fold induction of tyrosine aminotransferase catalytic activity is maximal at 2 h and is still significantly greater than the basal level at 5 h. In the basal state, tyrosine aminotransferase mRNA codes for 0.019 +/- 0.003% of the protein synthesized in the in vitro system, whereas after cyclic nucleotide treatment this value 0.115 +/- 0.015%, hence the increase in mRNATAT activity is relatively specific. Cordycepin, at a concentration which prevents the accumulation in cytoplasm of poly(A)+ mRNA, completely blocks the increase in both the catalytic and mRNA activity of this enzyme. The marked increase in functional mRNA, the requirement for continued synthesis of poly(A)+ RNA, and the rapid induction and deinduction suggest that the cyclic nucleotide is enhancing specific mRNA synthesis and/or, processing, however an effect on mRNA degradation cannot be excluded.  相似文献   

11.
B Dozin  M A Magnuson  V M Nikodem 《Biochemistry》1985,24(20):5581-5586
Rat liver malic enzyme (ME) synthesis is known to be regulated by 3,5,3'-triiodo-L-thyronine (T3). Hybridization of 32P-labeled ME cDNA with RNA extracted from normal and T3-induced livers (15 or 50 micrograms/100 g body weight for 10 days) showed an increase in the ME mRNA concentration by approximately 11-fold in T3-treated rats. ME activity and ME mass were stimulated to the same degree as ME mRNA. Northern blot analysis of either total or poly(A+) RNA revealed two distinct ME mRNAs (21 and 27 S) which were equally induced by T3 treatment. Both mRNAs were shown by in vitro translation assay to program the synthesis of the same immunoprecipitable protein corresponding to full-sized ME. From all the above, we concluded that both messages code for active enzyme. ME activity and ME mRNA were also detected in nonhepatic tissues for which different responses to T3 induction were observed without direct correlation with their respective content of T3 nuclear receptor. Increases in ME activity and level of hybridizable ME mRNA were seen 48 h after a single administration of T3 (200 micrograms/100 g body weight) in liver, kidney, and heart (10.3- and 15.5-, 1.7- and 2.6-, and 1.72- and 3.4-fold above basal values, respectively). Lower levels of induction could already be detected after 24 h, liver being the most stimulated tissue. ME was not affected in brain, lung, testis, and spleen. Northern blot analysis showed that both ME mRNAs are present in all tissues tested, although in different relative proportions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
13.
14.
In the preceding paper (Yoshioka, H., et al. (1984) J. Biochem. 95, 937-947), we reported that 1,1-di(p-chlorophenyl)-2,2-dichloro-ethylene (DDE) induced the phenobarbital (PB)-inducible form of microsomal cytochrome P-450 (P-450(PB-1) in rat liver. In order to study more precisely the molecular events responsible for the induction of this particular form of cytochrome P-450 by the two chemical compounds, we determined the amounts of the mRNA coding for P-450(PB-1) in the liver of rats given a single dose of PB or DDE. RNA was extracted from the livers of the treated rats and the determination of the specific mRNA was carried out by using the rabbit reticulocyte lysate translation system and by a dot hybridization method using cloned P-450(PB-1) cDNA (Fujii-Kuriyama, Y., et al. (1982) Proc. Natl. Acad. Sci. U.S. 79, 2793-2797) as the probe. The amounts of P-450(PB-1) mRNA determined by these two methods at various time points of the induction process showed good agreement. These observations further confirmed the induction of an identical form of cytochrome P-450 by DDE and PB. The maximum level of P-450(PB-1) mRNA, which was about 8-fold higher than the control level, was attained at 20-30 h and at 48-72 h after the administration of PB and DDE, respectively. The mRNA level showed a rapid decrease after the peak in the liver of PB-treated rats, but the decrease was much slower with DDE-treated rats. We conclude that DDE had a more persistent inducing effect on the mRNA level than PB, although these two compounds induced an identical form of cytochrome P-450 in the liver microsomes of the animals.  相似文献   

15.
The role of thyroid hormone in regulating the expression of the flavoprotein NADPH cytochrome P450 reductase was studied in adult rats. Depletion of circulating thyroid hormone by hypophysectomy, or more selectively, by treatment with the anti-thyroid drug methimazole led to a 75-85% depletion of hepatic microsomal P450 reductase activity and protein in both male and female rats. Thyroxine substantially restored P450 reductase activity at a dose that rendered the thyroid-depleted rats euthyroid. Microsomal P450 reductase activity in several extrahepatic tissues was also dependent on thyroid hormone, but to a lesser extent than in liver (30-50% decrease in kidney, adrenal, lung, and heart but not in testis from hypothyroid rats). Hepatic P450 reductase mRNA levels were also decreased in the hypothyroid state, indicating that the loss of P450 reductase activity is not a consequence of the associated decreased availability of the FMN and FAD cofactors of P450 reductase. Parallel analysis of S14 mRNA, which has been studied extensively as a model thyroid-regulated liver gene product, indicated that P450 reductase and S14 mRNA respond similarly to these changes in thyroid state. In contrast, while the expression of S14 and several other thyroid hormone-dependent hepatic mRNAs is stimulated by feeding a high carbohydrate, fat-free diet, hepatic P450 reductase expression was not increased by this lipogenic diet. Injection of hypothyroid rats with T3 at a supraphysiologic, receptor-saturating dose stimulated a major induction of hepatic P450 reductase mRNA that was detectable 4 h after the T3 injection, and peaked at approximately 650% of euthyroid levels by 12 h. However, this same treatment stimulated a biphasic increase in P450 reductase protein and activity that required 3 days to reach normal euthyroid levels. T3 treatment of euthyroid rats also stimulated a major induction of P450 reductase mRNA that was maximal (12-fold increase) by 12 h, but in this case no major increase in P450 reductase protein or activity was detectable over a 3-day period. Together, these studies establish that thyroid hormone regulates P450 reductase expression by pretranslational mechanisms. They also suggest that other regulatory mechanisms, which may involve changes in P450 reductase protein stability and/or changes in the translational efficiency of its mRNA, are likely to occur.  相似文献   

16.
The effect of fructose on the induction of L-type pyruvate kinase mRNA in diabetic rat liver was studied by using a cloned cDNA probe. Fructose feeding resulted in a 5- to 6-fold increase in the L-type enzyme mRNA level after 1 to 3 days. These changes were approximately proportional to the changes in the level of translatable mRNA of this enzyme. A significant increase in total cellular L-type enzyme mRNA level was observed within 2 h after fructose feeding and the level reached a maximum after 8 h. Dietary glycerol also markedly increased the L-type mRNA level. These alterations were essentially due to the changes in the cytosolic mRNA. Northern blot analysis of total cellular RNA revealed that two L-type enzyme mRNA species with molecular sizes of 2.1 and 3.6 kilobases were proportionally increased during the fructose induction. The two mRNA forms were found in immunopurified L-type enzyme mRNA and directed synthesis of the L-type subunit in vitro; they are therefore functional mature forms. In contrast, analysis of nuclear RNA showed five putative precursor RNA species for the enzyme, up to 9.4 kilobases in length, in the liver of fructose-fed rats, while no band of the RNA species was found in the nuclei of control liver. The changes in the number of bands of these RNA species and their intensities after fructose feeding preceded the changes in the level of total cellular L-type enzyme mRNA sequences. These results indicate that dietary fructose causes a rapid increase in the level of L-type pyruvate kinase mRNA sequences by acting at the nuclear level.  相似文献   

17.
Glucose transport in 3T3L1 adipocytes is mediated by two facilitated diffusion transport systems. We examined the effect of chronic glucose deprivation on transport activity and on the expression of the HepG2 (GLUT 1) and adipocyte/muscle (GLUT 4) glucose transporter gene products in this insulin-sensitive cell line. Glucose deprivation resulted in a maximal increase in 2-deoxyglucose uptake of 3.6-fold by 24 h. Transport activity declined thereafter but was still 2.4-fold greater than the control by 72 h. GLUT 1 mRNA and protein increased progressively during starvation to values respectively 2.4- and 7.0-fold greater than the control by 72 h. Much of the increase in total immunoreactive GLUT 1 protein observed later in starvation was the result of the accumulation of a non-functional or mistargeted 38 kDa polypeptide. Immunofluorescence microscopy indicated that increases in GLUT 1 protein occurred in presumptive plasma membrane (PM) and Golgi-like compartments during prolonged starvation. The steady-state level of GLUT 4 protein did not change during 72 h of glucose deprivation despite a greater than 10-fold decrease in the mRNA. Subcellular fractionation experiments indicated that the increased transport activity observed after 24 h of starvation was principally the result of an increase in the 45-50 kDa GLUT 1 transporter protein in the PM. The level of the GLUT 1 transporter in the PM and low-density microsomes (LDM) was increased by 3.9- and 1.4-fold respectively, and the GLUT 4 transporter content of the PM and LDM was 1.7- and 0.6-fold respectively greater than that of the control after 24 h of glucose deprivation. These data indicate that newly synthesized GLUT 1 transporters are selectively shuttled to the PM and that GLUT 4 transporters undergo translocation from an intracellular compartment to the PM during 24 h of glucose starvation. Thus glucose starvation results in an increase in glucose transport in 3T3L1 adipocytes via a complex series of events involving increased biosynthesis, decreased turnover and subcellular redistribution of transporter proteins.  相似文献   

18.
The oxidation of sn-glycerol 3-phosphate by mitochondrial sn-glycerol 3-phosphate dehydrogenase (mGPDH) is a major pathway for transfer of cytosolic reducing equivalents to the mitochondrial electron transport chain. It is known to generate H2O2 at a range of rates and from multiple sites within the chain. The rates and sites depend upon tissue source, concentrations of glycerol 3-phosphate and calcium, and the presence of different electron transport chain inhibitors. We report a detailed examination of H2O2 production during glycerol 3-phosphate oxidation by skeletal muscle, brown fat, brain, and heart mitochondria with an emphasis on conditions under which mGPDH itself is the source of superoxide and H2O2. Importantly, we demonstrate that a substantial portion of H2O2 production commonly attributed to mGPDH originates instead from electron flow through the ubiquinone pool into complex II. When complex II is inhibited and mGPDH is the sole superoxide producer, the rate of superoxide production depends on the concentrations of glycerol 3-phosphate and calcium and correlates positively with the predicted reduction state of the ubiquinone pool. mGPDH-specific superoxide production plateaus at a rate comparable with the other major sites of superoxide production in mitochondria, the superoxide-producing center shows no sign of being overreducible, and the maximum superoxide production rate correlates with mGPDH activity in four different tissues. mGPDH produces superoxide approximately equally toward each side of the mitochondrial inner membrane, suggesting that the Q-binding pocket of mGPDH is the major site of superoxide generation. These results clarify the maximum rate and mechanism of superoxide production by mGPDH.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号