首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The CD40 ligand (CD40L)-CD40 dyad can ignite proinflammatory and procoagulatory activities of the vascular endothelium in the pathogenesis and progression of atherosclerosis. Besides being expressed on the activated CD4(+) T cell surface (mCD40L), the majority of circulating CD40L reservoir (sCD40L) in plasma is released from stimulated platelets. It remains debatable which form of CD40L triggers endothelial inflammation. Here, we demonstrate that the agonistic antibody of CD40 (G28.5), which mimics the action of sCD40L, induces rapid endocytosis of CD40 independent of TRAF2/3/6 binding while CD40L expressed on the surface of HEK293A cells captures CD40 at the cell conjunction. Forced internalization of CD40 by constitutively active mutant of Rab5 preemptively activates NF-kappaB pathway, suggesting that CD40 was able to form an intracellular signal complex in the early endosomes. Internalized CD40 exhibits different patterns of TRAF2/3/6 recruitment and Akt phosphorylation from the membrane anchored CD40 complex. Finally, mCD40L but not sCD40L induces the upregulation of proinflammatory cytokines and cell adhesion factors in the primary human vascular endothelial cells in vitro, although both forms of CD40L activate NF-kappaB pathway. These results therefore may help understand the molecular mechanism of CD40L signaling that contributes to the pathophysiology of atherosclerosis.  相似文献   

2.
The Tie2 receptor tyrosine kinase plays a pivotal role in vascular and hematopoietic development. The major intracellular signaling systems activated by Tie2 in response to Angiopoietin-1 (Ang1) include the Akt and Erk1/2 pathways. Here, we investigated the role of cholesterol-rich plasma membrane microdomains (lipid rafts) in Tie2 regulation. Tie2 could not be detected in the lipid raft fraction of human umbilical vein endothelial cells (HUVECs) unless they were first stimulated with Ang1. After stimulation, a minor fraction of Tie2 associated tightly with the lipid rafts. Treatment of HUVECs with the lipid raft disrupting agent methyl-β-cyclodextrin selectively inhibited Ang1-induced Akt phosphorylation, but not Erk1/2 phosphorylation. It has been reported that inhibition of FoxO activity is an important mechanism for Ang1-stimulated Tie2-mediated endothelial function. Consistent with this, we found that phosphorylation of FoxO mediated by Tie2 activation was attenuated by lipid raft disruption. Therefore, we propose that lipid rafts serve as signaling platforms for Tie2 receptor tyrosine kinase in vascular endothelial cells, especially for the Akt pathway.  相似文献   

3.
Plasma membranes of eukaryotic cells are not uniform, possessing distinct cholesterol- and sphingolipid-rich lipid raft microdomains which constitute critical sites for signal transduction through various immune cell receptors and their co-receptors. CD1d is a conserved family of major histocompatibility class I-like molecules, which has been established as an important factor in lipid antigen presentation to natural killer T (NKT) cells. Unlike conventional T cells, recognition of CD1d by the T cell receptor (TCR) of NKT cells does not require CD4 or CD8 co-receptors, which are critical for efficient TCR signaling. We found that murine CD1d (mCD1d) was constitutively present in the plasma membrane lipid rafts on antigen presenting cells, and that this restricted localization was critically important for efficient signal transduction to the target NKT cells, at low ligand densities, even without the involvement of co-receptors. Further our results indicate that there may be additional regulatory molecule(s), co-located in the lipid raft with mCD1d for NKT cell signaling.  相似文献   

4.

Background

CD40 is a receptor expressed on a wide range of cells such as leukocytes and endothelial cells (EC). As a member of the tumor necrosis factor (TNF) superfamily the activation of CD40 by CD40-ligand (CD40L) plays a crucial role for the development and progression of a variety of inflammatory processes including atherosclerosis. The aim of the present study was to investigate the effect of CD40/CD40L interaction on leukocyte adhesion to the endothelium and on endothelial cell migration.

Methods and results

Human umbilical vein endothelial cells (HUVEC) were stimulated with either stable transfectants of mouse myeloma cells expressing the CD40L or wild type cells (4 h). Subsequently adhesion of leukocytes expressing Sialyl Lewis X, the counterpart for E-selectin (HL60 cells), was measured under shear stress (2–2.6 dyne/cm2) using a flow chamber adhesion assay. Stimulation of CD40 led to a significant increase of E-selectin dependent adhesion of leukocytes to the endothelium. Incubation of cells with either the CD40L blocking antibody TRAP-1 or the E-selectin blocking antibody BBA2 during CD40 stimulation completely abolished adhesion of leukocytes to HUVEC. Similar results were found in human cardiac microvasculature endothelial cells (HCMEC). In contrast stimulation of CD40 had no effect on adhesion of l-selectin expressing NALM6-L cells. Furthermore, CD40/CD40L interaction abrogated VEGF-induced migration of HUVEC compared to non-stimulated controls. In comparison experiments, stimulation of endothelial cells with VEGF led to a significant phosphorylation of ERK1/2, Akt, and eNOS. Stimulation of endothelial CD40 had no effect on VEGF-induced phosphorylation of ERK1/2. However, VEGF-induced activation of Akt and eNOS was reduced to baseline levels when endothelial CD40 was stimulated.

Conclusion

CD40/CD40L interaction induces E-selectin dependent adhesion of leukocytes to human endothelial cells and reduces endothelial cell migration by inhibiting the Akt/eNOS signaling pathway.  相似文献   

5.
T cell polarization and redistribution of cellular components are critical to processes such as activation, migration, and potentially HIV infection. Here, we investigate the effects of CD4 engagement on the redistribution and localization of chemokine receptors, CXCR4 and CCR5, adhesion molecules, and lipid raft components including cholesterol, GM1, and glycosyl-phosphatidylinositol (GPI)-anchored proteins. We demonstrate that anti-CD4-coated beads (alpha CD4-B) rapidly induce co-capping of chemokine receptors as well as GPI-anchored proteins and adhesion molecules with membrane cholesterol and lipid rafts on human T cell lines and primary T cells to the area of bead-cell contact. This process was dependent on the presence of cellular cholesterol, cytoskeletal reorganization, and lck signaling. Lck-deficient JCaM 1.6 cells failed to cap CXCR4 or lipid rafts to alpha CD4-B. Biochemical analysis reveals that CXCR4 and LFA-1 are recruited to lipid rafts upon CD4 but not CD45 engagement. Furthermore, we also demonstrate T cell capping of both lipid rafts and chemokine receptors at sites of contact with HIV-infected cells, despite the binding of an HIV inhibitory mAb to CXCR4. We conclude that cell surface rearrangements in response to CD4 engagement may serve as a means to enhance cell-to-cell signaling at the immunological synapse and modulate chemokine responsiveness, as well as facilitate HIV entry and expansion by synaptic transmission.  相似文献   

6.
Lipid rafts in plants   总被引:1,自引:0,他引:1  
Bhat RA  Panstruga R 《Planta》2005,223(1):5-19
About two decades ago a provocative hypothesis evolved suggesting that the plasma membrane (PM) of mammalian and probably other eukaryotic cells constitutes a mosaic of patches comprising particular molecular compositions. These scattered lipid bilayer microdomains are supposedly enriched in sterols as well as sphingolipids and depleted in unsaturated phospholipids. In addition, the PM microdomains are proposed to host glycosyl-phosphatidylinositol-anchored polypeptides and a subset of integral and peripheral cell surface proteins while excluding others. Though the actual in vivo existence of such “lipid rafts” remains controversial, a range of fundamental biological functions has been put forward for these PM microenvironments. A variety of recent studies provide preliminary evidence that lipid rafts may also occur in plant cells.  相似文献   

7.
The cellular localization of endothelin (ET), a novel vasoconstrictor peptide, was studied in human vascular tissues by immunohistochemistry. Distinct and diffuse staining for ET-like immunoreactivity was demonstrated in the cytoplasm of vascular endothelial cells, but not in smooth muscle cells or adventitial fibroblasts. The specificity was confirmed by the negative results following immunoabsorption. These findings suggest that human vascular endothelial cells function as an endocrine and/or paracrine cells for ET secretion.  相似文献   

8.
Lipid rafts in neuregulin signaling at synapses   总被引:3,自引:0,他引:3  
Yang XL  Xiong WC  Mei L 《Life sciences》2004,75(21):2495-2504
Neuregulins are a family of EGF domain-containing factors that play an important role in development. In the nervous system, they promote glial differentiation, induce neurotransmitter receptor expression, and regulate synaptic plasticity. Recent studies indicate that ErbB protein tyrosine kinases, neuregulin receptors, translocate to lipid raft microdomains in the plasma membrane in response to neuregulin. Localization of ErbB proteins in lipid rafts appeared to be necessary for neuregulin signaling and regulation of synaptic plasticity. We will review recent studies of lipid rafts and neuregulin function and discuss possible roles of lipid rafts in compartmentalized neuregulin signaling and translocation of ErbB proteins to synapses.  相似文献   

9.
Angiotensin II (ANG-II) receptors (AGTRs) contribute to renal physiology and pathophysiology, but the underlying mechanisms that regulate AGTR function in glomerular mesangium are poorly understood. Here, we show that AGTR1 is the functional AGTR subtype expressed in neonatal pig glomerular mesangial cells (GMCs). Cyclodextrin (CDX)-mediated cholesterol depletion attenuated cell surface AGTR1 protein expression and ANG-II-induced intracellular Ca2+ ([Ca2+]i) elevation in the cells. The COOH-terminus of porcine AGTR1 contains a caveolin (CAV)-binding motif. However, neonatal GMCs express CAV-1, but not CAV-2 and CAV-3. Colocalization and in situ proximity ligation assay detected an association between endogenous AGTR1 and CAV-1 in the cells. A synthetic peptide corresponding to the CAV-1 scaffolding domain (CSD) sequence also reduced ANG-II-induced [Ca2+]i elevation in the cells. Real-time imaging of cell growth revealed that ANG-II stimulates neonatal GMC proliferation. ANG-II-induced GMC growth was attenuated by EMD 66684, an AGTR1 antagonist; BAPTA, a [Ca2+]i chelator; KN-93, a Ca2+/calmodulin-dependent protein kinase II inhibitor; CDX; and a CSD peptide, but not PD 123319, a selective AGTR2 antagonist. Collectively, our data demonstrate [Ca2+]i-dependent proliferative effect of ANG-II and highlight a critical role for lipid raft microdomains in AGTR1-mediated signal transduction in neonatal GMCs.  相似文献   

10.
Acute humoral xenograft rejection (AHXR), characterized by thrombin generation and endothelial cell activation, should be overcome for the success of xenotransplantation. Fibrinogen-like protein 2 (fgl2) expressed on endothelial cells can convert prothrombin to thrombin directly, which indicates that the induced fgl2 expression in activated endothelial cells can contribute to thrombosis. In xenotransplant condition, the interaction between human CD40L and porcine endothelial CD40 can activate endothelial cells. In this study, we investigated the effect of endothelial cell activation through the interaction between human CD40L and porcine CD40 on fgl2 expression and its function as a direct prothrombinase. We found that CD40 stimulation up-regulated fgl2 expression as well as its enzymatic activity in porcine endothelial cells. Moreover, functional studies using knock-down system showed that the major factor converting human prothrombin to thrombin is fgl2 protein expressed on porcine endothelial cells. Overall, this study demonstrates that fgl2 expression can be induced by xenogeneic CD40 signal on endothelial cells and contribute to thrombin generation.  相似文献   

11.
Lipid rafts play an important role in the life cycle of many viruses. Cholesterol is a critical structural component of lipid rafts. Although the porcine reproductive and respiratory syndrome virus (PRRSV) has restricted cell tropism for cells of the monocyte/macrophage lineage, a non-macrophage cell MARC-145 was susceptible to PRRSV because of the expression of virus receptor CD163 on the cell surface, therefore MARC-145 cells is used as model cell for PRRSV studies. In order to determine if cholesterol is involved in PRRSV infection in MARC-145 cells, we used three pharmacological agents: methyl-β cyclodextrin (MβCD), mevinolin, and filipin complex to deplete cholesterol in MARC-145. Although these agents act by different mechanisms, they all significantly inhibited PRRSV infection. The inhibition could be prevented by addition of exogenous cholesterol. Cell membrane cholesterol depletion after virus infection had no effect on PRRSV production and cholesterol depletion pre-infection did not reduce the virus attachment, suggesting cholesterol is involved in virus entry. Further results showed that cholesterol depletion did not change expression levels of the PRRSV receptor CD163 in MARC-145, had no effect on clathrin-mediated endocytosis, but disturbed lipid-raft-dependent endocytosis. Collectively, these studies suggest that cholesterol is critical for PRRSV entry, which is likely to be mediated by a lipid-raft-dependent pathway.  相似文献   

12.
Targeted cancer therapy concepts often aim at the induction of adjuvant antitumor immunity or stimulation of tumor cell apoptosis. There is further evidence that combined application of immune stimulating and tumor apoptosis-inducing compounds elicits a synergistic antitumor effect. Here, we describe the development and characterization of bifunctional fusion proteins consisting of a single-chain variable fragment (scFv) domain derived from the CD40-specific monoclonal antibody G28-5 that is fused to the N-terminus of stabilized trimeric soluble variants of the death ligand TNF-related apoptosis-inducing ligand (TRAIL). As shown before by us and others for other cell surface antigen-targeted scFv-TRAIL fusion proteins, scFv:G28-TRAIL displayed an enhanced capacity to induce apoptosis upon CD40 binding. Studies with scFv:G28 fusion proteins of TRAIL mutants that discriminate between the two TRAIL death receptors, TRAILR1 and TRAILR2, further revealed that the CD40 binding-dependent mode of apoptosis induction of scFv:G28-TRAIL is operable with each of the two TRAIL death receptors. Binding of scFv:G28-TRAIL fusion proteins to CD40 not only result in enhanced TRAIL death receptor signaling but also in activation of the targeted CD40 molecule. In accordance with the latter, the scFv:G28-TRAIL fusion proteins triggered strong CD40-mediated maturation of dendritic cells. The CD40-targeted TRAIL fusion proteins described in this study therefore represent a novel type of bifunctional fusion proteins that couple stimulation of antigen presenting cells and apoptosis induction.  相似文献   

13.
Lipid rafts often serve as an entry site for certain viruses. Here, we report that lipid rafts in Vero E6 cells are involved in the entry of severe acute respiratory syndrome coronavirus (SARS-CoV). Infectivity assay showed the integrity of lipid rafts was required for productive infection of pseudotyped SARS-CoV. Depletion of plasma membrane cholesterol with MβCD relocalized raft-resident marker caveolin-1 as well as SARS-CoV receptor ACE2 to a nonraft environment, but did not significantly change the surface expression of ACE2. MβCD-treatment inhibited infectivity of pseudotyped SARS-CoV by 90%. Biochemical fractionation and confocal imaging confirmed that ACE2 colocalized with raft-resident markers. Furthermore, an ectodomain of SARS-CoV S protein (S1188HA) could associate with lipid rafts after binding to its receptor, and colocalize with raft-resident marker ganglioside GM1. The binding of S1188HA was not affected by depleting plasma membrane cholesterol. Taken together, our results support that lipid rafts serve as an entry port for SARS-CoV.  相似文献   

14.
Emerging concepts of membrane organization point to the compartmentalization of the plasma membrane into distinct lipid microdomains. This lateral segregation within cellular membranes is based on cholesterol-sphingolipid-enriched microdomains or lipid rafts which can move laterally and assemble into large-scale domains to create plasma membrane specialized cellular structures at specific cell locations. Such domains are likely involved in the genesis of the postsynaptic specialization at the neuromuscular junction, which requires the accumulation of acetylcholine receptors (AChRs), through activation of the muscle specific kinase MuSK by the neurotropic factor agrin and the reorganization of the actin cytoskeleton. We used C2C12 myotubes as a model system to investigate whether agrin-elicited AChR clustering correlated with lipid rafts. In a previous study, using two-photon Laurdan confocal imaging, we showed that agrin-induced AChR clusters corresponded to condensed membrane domains: the biophysical hallmark of lipid rafts [F. Stetzkowski-Marden, K. Gaus, M. Recouvreur, A. Cartaud, J. Cartaud, Agrin elicits membrane condensation at sites of acetylcholine receptor clusters in C2C12 myotubes, J. Lipid Res. 47 (2006) 2121-2133]. We further demonstrated that formation and stability of AChR clusters depend on cholesterol. We also reported that three different extraction procedures (Triton X-100, pH 11 or isotonic Ca++, Mg++ buffer) generated detergent resistant membranes (DRMs) with similar cholesterol/GM1 ganglioside content, which are enriched in several signalling postsynaptic components, notably AChR, the agrin receptor MuSK, rapsyn and syntrophin. Upon agrin engagement, actin and actin-nucleation factors such as Arp2/3 and N-WASP were transiently recovered within raft fractions suggesting that the activation by agrin can trigger actin polymerization. Taken together, the present data suggest that AChR clustering at the neuromuscular junction relies upon a mechanism of raft coalescence driven by agrin-elicited actin polymerization.  相似文献   

15.
Neuron differentiation is a complex process involving various cell-cell interactions, and multiple signaling pathways. We showed previously that CD40 is expressed and functional on mouse and human neurons. In neurons, ligation of CD40 protects against serum withdrawal-induced injury and plays a role in survival and differentiation. CD40 deficient mice display neuron dysfunction, aberrant neuron morphologic changes, and associated gross brain abnormalities. Previous studies by Tone and colleagues suggested that five isoforms of CD40 exist with two predominant isoforms expressed in humans: signal-transducible CD40 type I and a C-terminal truncated, non-signal-transducible CD40 type II. We hypothesized that differential expression of CD40 isoform type I and type II in neurons may modulate neuron differentiation. Results show that adult wild-type, and CD40−/− deficient mice predominantly express CD40 type I and II isoforms. Whereas adult wild-type mice express mostly CD40 type I in cerebral tissues at relatively high levels, in age and gender-matched CD40−/− mice CD40 type I expression was almost completely absent; suggesting a predominance of the non-signal-transducible CD40 type II isoform. Younger, 1 day old wild-type mice displayed less CD40 type I, and more CD40 type II, as well as, greater expression of soluble CD40 (CD40L/CD40 signal inhibitor), compared with 1 month old mice. Neuron-like N2a cells express CD40 type I and type II isoforms while in an undifferentiated state, however once induced to differentiate, CD40 type I predominates. Further, differentiated N2a cells treated with CD40 ligand express high levels of neuron specific nuclear protein (NeuN); an effect reduced by anti-CD40 type I siRNA, but not by control (non-targeting) siRNA. Altogether these data suggest that CD40 isoforms may act in a temporal fashion to modulate neuron differentiation during brain development. Thus, modulation of neuronal CD40 isoforms and CD40 signaling may represent important therapeutic modalities for neurodegenerative and neurodevelopmental disorders, as well as, for enhancement of neurogenesis.  相似文献   

16.
Externalization of phosphatidylserine (PS) takes place in apoptotic cells as well as in viable cells under certain circumstances. Recent studies showed that externalized PS is localized at the lipid raft in viable activated immune cells. We found that lipid rafts and PS existed in a mutually exclusive manner in apoptotic cells. The number of PS-exposing apoptotic cells decreased when lipid rafts were disrupted. BCtheta;, which binds selectively to cholesterol in a cholesterol-rich region, did not effectively recognize lipid rafts of apoptotic cells. Lipid rafts rich in GM1 were successfully prepared from apoptotic cells, but the lipid raft protein LAT was not enriched in the preparation. Furthermore, the amount of PS and phosphatidylethanolamine but not of cholesterol in lipid rafts appeared to change after induction of apoptosis. These results suggest that lipid rafts are structurally modified during apoptosis and, despite being localized differently from PS, are involved in the externalization of PS.  相似文献   

17.
随着HIV感染者及各类医疗措施导致的免疫受损者的增多,探讨一种适合免疫缺陷人群的预防机会感染的策略越来越受到重视。研究表明,CD4^+T细胞是抵抗肺孢子菌等机会感染的最主要因素,但不是唯一的因素。其中CD40配体(CD40L)被认为是一种可以启动B细胞和CD8^+T细胞反应的关键因子。为探讨CD4^+L是否能在缺乏CD4^+T细胞的小鼠体内启动免疫反应,本文研究了用卵白蛋白(OVA)作为模型抗原,联合应用CD40L引起的免疫反应。结果显示,同时应用OVA和CD40L,可使CD4^+T细胞耗竭小鼠体内抗OVA IgG抗体和抗原特异性IFN明显增多,提示在CD4^+T细胞缺乏的宿主体内,CIMOL可以启动B细胞和CD8^+T细胞类免疫反应。该结果为抗肺孢子菌等机会性感染的免疫预防研究提供可贵的资料。  相似文献   

18.
We previously showed that murine Langerhans cells (LC) express CD40 ligand (CD40L). In this study, we further investigated the function of CD40L on LC using agonistic antibodies and CD40L knockout (KO) mice. Signaling through CD40L decreased CD80 expression on LC 48 h after stimulation and the decrease was more remarkable in the presence of interferon-gamma (IFN-gamma). Signaling through CD40 enhanced the production of IL-12 p40 from LC, and simultaneous signaling through CD40L slightly augmented this effect. Addition of IFN-gamma further enhanced IL-12 p40 production. LC from CD40L KO mice expressed similar levels of surface molecules such as CD40, CD80, CD86, and MHC class II, compared with those from wild-type mice. However, they produced less amount of IL-12 p40 during 48 h after purification. These results suggest that signaling through CD40L on LC is important in regulating IL-12 production, which is critical for Th1 type immune responses.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号