首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two new analogues of TANDEM (des-N-tetramethyl triostin A) have been synthesised in an effort to elucidate the molecular basis of DNA nucleotide sequence recognition in this series of compounds. Their binding preferences have been investigated by DNAase I footprinting and differential inhibition of restriction nuclease attack. The presence of a single N-methyl group on only one valine residue (in [N-MeVal4] TANDEM) abolishes the ability to recognise DNA, presumably because this antibiotic analogue has suffered an unfavourable conformational change in the depsipeptide ring. A bis-methylated analogue, [N-MeCys3, N-MeCys7]TANDEM, was found to interact quite strongly with DNA and afforded binding sites, rich in AT residues, identical to those of TANDEM. Footprinting with various DNA fragments of known sequence showed that this analogue recognises sequences containing the dinucleotide TpA, although we cannot exclude the possibility that it binds to ApT as well. [N-MeCys3, N-MeCys7]TANDEM inhibits cutting by RsaI, a restriction enzyme that recognises GTAC but not by Sau3AI which recognises GATC. This provides further supportive evidence that the ligand (and, by extension, TANDEM itself) prefers binding to sequences containing the dinucleotide step TpA.  相似文献   

2.
We have prepared DNA fragments containing the sequences A15CGT15, T15CGA15 and T(AT)8CG(AT)15 cloned within the SmaI site of the pUC19 polylinker. These have been used as substrates in footprinting experiments with DNase I and diethylpyrocarbonate probing the effects of echinomycin, binding to the central CG, on the structure of the surrounding sequences. No clear DNase I footprints are seen with T15CGA15 though alterations in the nuclease susceptibility of surrounding regions suggest that the ligand is binding, albeit weakly at this site. All the other fragments show the expected footprints around the CG site. Regions of An and Tn are rendered much more reactive to DNase I and adenines on the 3'-side of the CG become hyperreactive to diethylpyrocarbonate. Regions of alternating AT show unusual changes in the presence of the ligand. At low concentrations (5 microM) cleavage of TpA is enhanced, whereas at higher concentrations a cleavage pattern with a four base pair repeat is evident. A similar pattern is seen with micrococcal nuclease. Modification by diethylpyrocarbonate is strongest at alternate adenines which are staggered in the 5'-direction across the two strands. We interpret these changes by suggesting secondary drug binding within regions of alternating AT, possibly to the dinucleotide ApT. DNase I footprinting experiments performed at 4 degrees C revealed neither enhancements nor footprints for flanking regions of homopolymeric A and T suggesting that the conformational changes are necessary consequence of drug binding.  相似文献   

3.
[N-MeCys3,N-MeCys7]TANDEM, an undermethylated analogue of Triostin A, contains two N-methyl groups on the cysteine residues only. Footprinting results showed that [N-MeCys3,N-MeCys7]TANDEM binds strongly to DNA rich in A.T residues [Low, C. M. L., Fox, K. R., Olsen, R. K., & Waring, M. J. (1986) Nucleic Acids Res. 14, 2015-2033]. However, it was not known whether specific binding of [N-MeCys3,N-MeCys7]TANDEM requires a TpA step or an ApT step. In 1:1 saturated complexes with the octamers [d(GGATATCC)]2 and [d(GGTTAACC)]2, [N-MeCys3,N-MeCys7]TANDEM binds to each octamer as a bis-intercalator bracketing the TpA step. The octadepsipeptide ring binds in the minor groove of the DNA. Analysis of sugar coupling constants from the phase-sensitive COSY data indicates that the sugar of the thymine in the TpA binding site adopts predominantly an N-type sugar conformation, while the remaining sugars on the DNA adopt an S-type conformation, as has been observed in other Triostin A and echinomycin complexes. The drug does not bind to the octamer [d(GGAATTCC)]2 as a bis-intercalator. Only weak nonintercalative binding is observed to this DNA octamer. These results show unambiguously that [N-MeCys3,N-MeCys7]TANDEM binds sequence specifically at TpA sites in DNA. The factors underlying the sequence specificity of [N-MeCys3,N-MeCys7]TANDEM binding to DNA are discussed.  相似文献   

4.
Echinomycin binding to alternating AT.   总被引:1,自引:1,他引:0       下载免费PDF全文
K R Fox  J N Marks    K Waterloh 《Nucleic acids research》1991,19(24):6725-6730
We have studied the binding of echinomycin to DNA fragments containing GC-rich regions flanked by blocks of alternating AT by DNase I footprinting and diethylpyrocarbonate modification. Regions of alternating AT flanking the sequences CCCG, CCGC, CGGC and GG show a four base pair DNase I cleavage pattern and reaction of alternate adenines with diethylpyrocarbonate. This pattern is strongest when the AT-block is immediately adjacent to the CpG ligand binding site. We explain these phenomena by suggesting that echinomycin binds to the dinucleotide step ApT in a cooperative fashion. The cooperative effects can be transmitted through the dinucleotide step GC but not CC or AA. No such repetitive patterns are seen with surrounding regions of (ATT).(AAT). Evidence is presented for secondary drug binding sites at CpC and TpG with weaker interaction at the CpG site within the hexanucleotide TTCGAA.  相似文献   

5.
Hoogsteen base pairs have been demonstrated to occur in base pairs adjacent to the CpG binding sites in complexes of triostin A and echinomycin with a variety of DNA oligonucleotides. To understand the relationship of these unusual base pairs to the sequence specificity of these quinoxaline antibiotics, the conformation of the base pairs flanking the YpR binding sites of the 2:1 drug-DNA complexes of triostin A with [d(ACGTACGT)]2 and of the TpA specific [N-MeCys3, N-MeCys7] TANDEM with [d(ATACGTAT)]2 have been studied by 1H NMR spectroscopy. In both the 2:1 triostin A-DNA complex and the 2:1 [N-MeCys3, N-MeCys7] TANDEM-DNA complex, the terminal A.T base pairs are Hoogsteen base paired with the 5' adenine in the syn conformation. This indicates that both TpA specific and CpG specific quinoxaline antibiotics are capable of inducing Hoogsteen base pairs in DNA. However, in both 2:1 complexes, Hoogsteen base pairing is limited to the terminal base pairs. In the 2:1 triostin A complex, the internal adenines are anti and in the 2:1 [N-MeCys3, N-MeCys7] TANDEM-DNA complex, the internal guanines are anti regardless of pH, which indicates that the central base pairs of both complexes form Watson-Crick base pairs. This indicates that the sequence dependent nature of Hoogsteen base pairing is the same in TpA specific and CpG specific quinoxaline antibiotic-DNA complexes. We have calculated a low resolution three-dimensional structure of the 2triostin A-[d(ACGTACGT)]2 complex and compared it with other CpG specific quinoxaline antibiotic-DNA complexes. The role of stacking in the formation of Hoogsteen base pairs in these complexes is discussed.  相似文献   

6.
We have used DNase I footprinting to study the binding strength and DNA sequence selectivity of novel derivatives of the quinoxaline bis-intercalator TANDEM. Replacing the valine residues in the cyclic octadepsipeptide with lysines does not affect the selectivity for TpA but leads to a 50-fold increase in affinity. In contrast, replacing both of the quinoxaline chromophores with naphthalene rings abolishes binding, while changing a single ring decreases the affinity, and footprints are observed at only the best binding sites (especially TATATA). By using fragments with different lengths of [(AT) n ], we demonstrate that these ligands bind best to the center of the longer (AT) n tracts.  相似文献   

7.
The effect of actinomycin on the structure of DNA fragments containing the sequences (AT)5GC(AT)5, (TA)5GC(TA)5, A9GCT9, and T9GCA9, cloned into the SmaI site of pUC19, has been studied by footprinting analysis using a variety of probes known to be sensitive to DNA structure. In each case clear footprints are found around the central GC sites. DNase I cleavage of fragments containing alternating AT shows much greater cutting at ApT than TpA; in the presence of actinomycin, although this preference is retained, there is a large increase in the cutting efficiency at the closest TpA steps. DNase I cleavage in homopolymeric regions of A and T, which is normally very poor, is greatly enhanced by drug binding. With T9GCA9 the enhancements are propagated in both directions, whereas changes are only found to the 5'-side of the GC site in A9GCT9. The results are confirmed by similar experiments with micrococcal nuclease and DNase II. Small increases in sensitivity to diethylpyrocarbonate are found at adenines proximal to GC. Experiments performed at 4 degrees C suggest that conformational changes are a necessary consequence of drug binding.  相似文献   

8.
Interaction of minor groove binding ligands with long AT tracts.   总被引:2,自引:2,他引:0       下载免费PDF全文
We have used quantitative DNase I footprinting to examine the ability of distamycin and Hoechst 33258 to discriminate between different arrangements of AT residues, using synthetic DNA fragments containing multiple blocks of (A/T)6or (A/T)10in identical sequence environments. Previous studies have shown that these ligands bind less well to (A/T)4sites containing TpA steps. We find that in (A/T)6tracts distamycin shows little discrimination between the various sites, binding approximately 2-fold stronger to TAATTA than (TA)3, T3A3and GAATTC. In contrast, Hoechst 33258 binds approximately 20-fold more tightly to GAATTC and TAATTA than T3A3and (TA)3. Hydroxyl radical footprinting reveals that both ligands bind in similar locations at the centre of each AT tract. At (A/T)10sites distamycin binds with similar affinity to T5A5, (TA)5and AATT, though bands in the centre of (TA)5are protected at approximately 50-fold lower concentration than those towards the edges. Hoechst 33258 shows a similar pattern of preference, with strong binding to AATT, T5A5and the centre of (TA)5. Hydroxyl radical footprinting reveals that at low concentrations both ligands bind at the centre of (TA)5and A5T5, while at higher concentrations ligand molecules bind to each end of the (A/T)10tracts. At T5A5two ligand molecules bind at either end of the site, even at the lowest ligand concentration, consistent with the suggestion that these compounds avoid the TpA step. Similar DNase I footprinting experiments with a DNA fragment containing T n (n = 3-6) tracts reveals that both ligands bind in the order T3< T4 << T5 = T6.  相似文献   

9.
We have studied the DNA sequence binding preference of the antitumour antibiotic nogalamycin by DNase-I footprinting using a variety of DNA fragments. The DNA fragments were obtained by cloning synthetic oligonucleotides into longer DNA fragments and were designed to contain isolated ligand-binding sites surrounded by repetitive sequences such as (A)n.(T)n and (AT)n. Within regions of (A)n.(T)n, clear footprints are observed with low concentrations of nogalamycin (< 5 microM), with apparent binding affinities for tetranucleotide sequences which decrease in the order TGCA > AGCT = ACGT > TCGA. In contrast, within regions of (AT)n, the ligand binds best to AGCT; binding to TCGA and TGCA is no stronger than to alternating AT. Within (ATT)n, the preference is for ACGT > TCGA. Although each of these binding sites contains all four base pairs, there is no apparent consensus sequence, suggesting that the selectivity is affected by local DNA dynamic and structural effects. At higher drug concentrations (> 25 microM), nogalamycin prevents DNAse-I cleavage of (AT)n but shows no interaction with regions of (AC)n.(GT)n. Regions of (A)n.(T)n, which are poorly cut by DNase I, show enhanced rates of cleavage in the presence of low concentrations of nogalamycin, but are protected from cleavage at higher concentrations. We suggest that this arises because drug binding to adjacent regions distorts the DNA to a structure which is more readily cut by the enzyme and which is better able to bind further ligand molecules.  相似文献   

10.
Asymmetric structure of a three-arm DNA junction   总被引:6,自引:0,他引:6  
We present here experimental evidence that three-arm branched DNA molecules form an asymmetric structure in the presence of Mg2+. Electrophoretic mobility and chemical and enzymatic footprinting experiments on a three-arm branched DNA molecule formed from three 16-mer strands are described. The electrophoretic mobilities of three species of a three-arm junction in which pairs of arms are extended are found to differ in the presence of Mg2+: one combination of elongated arms migrates significantly faster than the other two. This effect is eliminated in the absence of Mg2+, leading us to suggest that the three-arm DNA junction forms an asymmetric structure due to preferential stacking of two of the arms at the junction in the presence of Mg2+. The pattern of self-protection of each 16-mer strand of the core complex exposed to Fe(II).EDTA and DNase I scission is unique, consistent with formation of an asymmetric structure in the presence of Mg2+. We conclude that three-arm junctions resemble four-arm junctions in showing preferential stacking effects at the branch site. Comparison of the scission patterns of linear duplexes and the branched trimer by the reactive probes methidiumpropyl-EDTA.Fe(II) [MPE.Fe(II)] and Cu(I)-[o-phenanthroline]2 [(OP)2CuI] further indicates that the branch point represents a site of enhanced binding for drugs, as it does in the four-arm case. Reaction with diethyl pyrocarbonate (DEPC), a purine-specific probe sensitive to conformation, is enhanced at the branch site, consistent with loosening of base pairing or unpairing at this point.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
DNA fragments containing the sequence CG(AT)nCG have been used in footprinting experiments to assess the effect of echinomycin, which binds to CG steps, on the structure of the central AT region. DNAase I normally cuts ApT much better than TpA; in the presence of the drug this preference is retained but cleavage at TpA is enhanced. Changes in cleavage by micrococcal nuclease have also been observed. Echinomycin renders alternate adenines hyperreactive to diethylpyrocarbonate. The results suggest that echinomycin induces structural changes in regions surrounding its binding site and that these can be cooperatively propagated over several turns of the DNA helix.  相似文献   

12.
A Abu-Daya  P M Brown    K R Fox 《Nucleic acids research》1995,23(17):3385-3392
We have examined the interaction of distamycin, netropsin, Hoechst 33258 and berenil, which are AT-selective minor groove-binding ligands, with synthetic DNA fragments containing different arrangements of AT base pairs by DNase I footprinting. For fragments which contain multiple blocks of (A/T)4 quantitative DNase I footprinting reveals that AATT and AAAA are much better binding sites than TTAA and TATA. Hoechst 33258 shows that greatest discrimination between these sites with a 50-fold difference in affinity between AATT and TATA. Alone amongst these ligands, Hoechst 33258 binds to AATT better than AAAA. These differences in binding to the various AT-tracts are interpreted in terms of variations in DNA minor groove width and suggest that TpA steps within an AT-tract decrease the affinity of these ligands. The behaviour of each site also depends on the flanking sequences; adjacent pyrimidine-purine steps cause a decrease in affinity. The precise ranking order for the various binding sites is not the same for each ligand.  相似文献   

13.
Interaction of netropsin, distamycin A and a number of bis-netropsins with DNA fragments of definite nucleotide sequence was studied by footprinting technique. The nuclease protection experiments were made at fixed DNA concentration and varying ligand concentrations. The affinity of ligand for a DNA site was estimated from measurements of ligand concentration that causes 50% protection of the DNA site. Distribution pattern of the protected and unprotected regions along the DNA fragment was compared with the theoretically expected arrangement of the ligand along the same DNA. The comparison led us to the following conclusions: 1. Footprinting experiments show that at high levels of binding the arrangement of netropsin molecules along the DNA corresponds closely to the distribution pattern expected from theoretical calculations based on the known geometry of netropsin--DNA complex. However, the observed differences in the affinity of netropsin for various DNA sequences is markedly greater than that expected from theoretical calculations. 2. Netropsin exhibits a greater selectivity of binding than that expected for a ligand with three specific reaction centers associated with the antibiotic amide groups. It binds preferentially to DNA regions containing four or more successive AT pairs. Among 13 putative binding sites for netropsin with four or more successive AT pairs there are 11 strong binding sites and two weaker sites which are occupied at 2 D/P less than or equal to 1/9 and 2 D/P = 1/4, respectively. 3. The extent of specificity manifested by distamycin A is comparable to that shown by netropsin although the molecule of distamycin A contains four rather than three amide groups. At high levels of binding distamycin A occupies the same binding sites on DNA as netropsin does. 4. The binding specificity of bis-netropsins is greater than that of netropsin. Bis-netropsins can bind to DNA in such a way that the two netropsin-like fragments are implicated in specific interaction with DNA base pairs. However, the apparent affinity of bis-netropsins estimated from footprinting experiments is comparable with that of netropsin for the same DNA region. 5. At high levels of binding bis-netropsins and distamycin A (but not netropsin) can occupy any potential site on DNA irrespectively of the DNA sequence. 6. Complex formation with netropsin increases sensitivity to DNase I at certain DNA sites along with the protection effect observed at neighboring sites.  相似文献   

14.
K Izuhara  K Okubo  N Hamasaki 《Biochemistry》1989,28(11):4725-4728
Diethyl pyrocarbonate inhibited the phosphate exchange across the human erythrocyte membrane. The exchange rate was inhibited only when the membranes were modified with the reagent from the cytosolic surface of resealed ghosts. The intracellular modification by diethyl pyrocarbonate inhibited the extracellular binding of [3H]dihydro-4,4'-diisothiocyanostilbene-2,2'-disulfonic acid to band 3 protein. Furthermore, the extracellular 4,4'-dinitrostilbene-2,2'-disulfonic acid protected the membranes from the intracellular modification by diethyl pyrocarbonate. These results suggest that the extracellular binding of 4,4'-dinitrostilbene-2,2'-disulfonic acid to band 3 protein induces the conformational change of the intracellular counterpart of band 3 protein and the diethyl pyrocarbonate susceptible residue(s) is (are) hidden from the cytosolic surface of the cell membrane in connection with the conformational change. Conversely, under the conditions where the diethyl pyrocarbonate modification is confined to the intracellular side of the membrane, the extracellular binding site of [3H]dihydro-4,4'-diisothiocyanostilbene-2,2'-disulfonic acid is hidden from the cell surface.  相似文献   

15.
The sequence selectivity associated with binding to DNA of three alkaloids belonging to the benzophenanthridine family has been analysed by DNase I footprinting, and the results were compared with those obtained from an analysis of the behaviour of the standard intercalator, ethidium bromide. Like the ethidium, the benzophenanthridine compounds appear to bind best to regions of mixed nucleotide sequence, especially those containing alternating purines and pyrimidines, although there are some notable differences in behaviour. There is also a marked lack of binding to sequences such as (AT)n, where n greater than or equal to 3. The binding to DNA of the benzophenanthridines is specifically related to the hydrogen ion concentration of the medium, in that the DNase I footprints are considerably enhanced when the reaction is performed at a pH below 7.0. We discuss these results in terms of a greater preponderance of the intercalating species being present at lower pH.  相似文献   

16.
The interaction of echinomycin with a kinetoplast DNA fragment which contains phased runs of adenine residues has been examined by various footprinting techniques. DNAase I footprinting confirms that all drug-binding sites contain the dinucleotide CpG. However, not all such sequences are protected. Three sites, each of which is located between two adenine tracks in the sequence GCGA, are not protected from DNAase I attack. Enhanced cleavage by DNAase I, DNAase II and micrococcal nuclease is observed in regions surrounding drug-binding sites. The results suggest that echinomycin alters the conformation of the AT tracks, making them more like an average DNA structure. Echinomycin renders adenine residues in the sequence CGA hyper-reactive to diethyl pyrocarbonate.  相似文献   

17.
In the course of a program aimed at developing sequence-specific gene-regulatory small organic molecules, we have investigated the DNA interactions of a new series of nine diphenylfuran dications related to the antiparasitic drug furamidine (DB75). Two types of structural modifications were tested: the terminal amidine groups of DB75 were shifted from the para to the meta position, and the amidines were replaced with imidazoline or dimethyl-imidazoline groups, to test the importance of both the position and nature of positively charged groups on DNA interactions. The interactions of these compounds with DNA and oligonucleotides were studied by a combination of biochemical and biophysical techniques. Absorption and CD measurements suggested that the drugs bind differently to AT and GC sequences in DNA. The para-para dications, like DB75, bind into the minor groove of poly(dAT)(2) and intercalate between the base pairs of poly(dGC)(2), as revealed by electric linear dichroism experiments. In contrast, the meta-meta compounds exhibit a high tendency to intercalate into DNA whatever the target sequence. The lack of sequence selectivity of the meta-meta compounds containing amidines or dimethyl-imidazoline groups was also evident from DNase I footprinting and surface plasmon resonance (SPR) experiments. Accurate binding measurements using the BIAcore SPR method revealed that all nine compounds bind with similar affinity to an immobilized GC sequence DNA hairpin but exhibit very distinct affinities for the corresponding AT hairpin oligonucleotide. The minor groove-binding para-para compounds have a high specificity for AT sequences. The biophysical data clearly indicate that shifting the cationic substituents from the para to the meta position results in a loss of specificity and change in binding mode. The strong AT selectivity of the para-para compounds was independently confirmed by DNase I footprinting experiments performed with a range of DNA restrictions fragments. In terms of AT selectivity, the compounds rank in the order para-para > para-meta > meta-meta. The para dications bind preferentially to sequences containing four contiguous AT base pairs. Additional footprinting experiments with substrates containing the 16 possible [A.T](4) blocks indicated that the presence of a TpA step within an [A.T] (4) block generally reduces the extent of binding. The diverse methods, from footprinting to SPR to dichroism, provide a consistent model for the interactions of the diphenylfuran dications with DNA of different sequences. Altogether, the results attest unequivocally that the binding mode for unfused aromatic cations can change completely depending on substituent position and DNA sequence. These data provide a rationale to explain the relationships between sequence selectivity and mode of binding to DNA for unfused aromatic dications related to furamidine.  相似文献   

18.
Cationic porphyrins as probes of DNA structure.   总被引:2,自引:2,他引:0       下载免费PDF全文
The DNA binding specificity of a group of cationic manganese porphyrin complexes has been examined using DNase I footprinting methodology and by observing the sites of porphyrin-induced DNA strand scission in the presence of potassium superoxide. The compounds, which possess systematic changes in total charge, its distribution on the periphery on the macrocycle and ligand shape, bind in the minor groove of AT rich regions of DNA. While changes in total charge and charge arrangement do not significantly influence specificity, a shape change which blocks close ligand contact with the minor groove relaxes the original AT specificity causing the compound to cleave at both AT and GC sites. The observed changes in binding sequence specificity were interpreted in terms of electrostatic and steric factors associated with both the compounds and DNA.  相似文献   

19.
Techniques of DNase I and micrococcal nuclease footprinting have been used to compare the binding sites for berenil, netropsin and distamycin on two different DNA fragments. Each ligand binds to the A + T-rich zones which contain clusters of at least four A.T base pairs. Neither guanosine nor cytidine nucleotides appear to be allowed within the A + T-rich runs which constitute the preferred binding sites, although they are sometimes protected from DNase I cleavage in neighbouring regions. Berenil and netropsin share with distamycin the property of causing enhanced rates of cleavage at certain sequences flanking their binding sites. There are significant differences in the concentrations of each ligand required to produce defined patterns of protection, seemingly dependent upon the nature (and possibly the gross base composition) of the piece of DNA being used in the experiment.  相似文献   

20.
DNase I and MPE.Fe (II) footprinting both employ partial cleavage of ligand-protected DNA restriction fragments and Maxam-Gilbert sequencing gel methods of analysis. One method utilizes the enzyme, DNase I, as the DNA cleaving agent while the other employs the synthetic molecule, methidium-propyl-EDTA (MPE). For actinomycin D, chromomycin A3 and distamycin A, DNase I footprinting reports larger binding site sizes than MPE.Fe (II). DNase I footprinting appears more sensitive for weakly bound sites. MPE.Fe (II) footprinting appears more accurate in determining the actual size and location of the binding sites for small molecules on DNA, especially in cases where several small molecules are closely spaced on the DNA. MPE.Fe (II) and DNase I report the same sequence and binding site size for lac repressor protein on operator DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号