首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intact core tetraether membrane lipids of marine planktonic Crenarchaeota were quantified in water column-suspended particulate matter obtained from four depth intervals (~70, 500, 1,000 and 1,500 m) at seven stations in the northwestern Arabian Sea to investigate the distribution of the organisms at various depths. Maximum concentrations generally occurred at 500 m, near the top of the oxygen minimum zone, and the concentrations at this depth were, in most cases, slightly higher than those in surface waters. In contrast, lipids derived from eukaryotes (cholesterol) and from eukaryotes and bacteria (fatty acids) were at their highest concentrations in surface waters. This indicates that these crenarchaeotes are not restricted to the photic zone of the ocean, which is consistent with the results of recent molecular biological studies. Since the Arabian Sea has a strong oxygen minimum zone between 100 and 1,000 m, with minimum oxygen levels of <1 μM, the abundance of crenarchaeotal membrane lipids at 500 m suggests that planktonic Crenarchaeota are probably facultative anaerobes. The cell numbers we calculated from the concentrations of membrane lipids are similar to those reported for the Central Pacific Ocean, supporting the recent estimation of M. B. Karner, E. F. DeLong, and D. M. Karl (Nature 409:507-510, 2001) that the world's oceans contain ca. 1028 cells of planktonic Crenarchaeota.  相似文献   

2.
Abstract The diether and tetraether lipids were isolated from the phospholipids of Methanobacterium thermoautotrophicum strain Hveragerdi. These membrane components were assayed by high performance liquid chromatography. The ratio of diether to tetraether lipids was 1:14 on a weight basis and represents the highest proportion of tetraether yet reported in a methanogenic bacterium. This data and the application of this method has relevance in microbial ecology and organic geochemistry where these chemical signatures may be used to assess the contributions of methane-forming bacteria to biological processes in natural environments.  相似文献   

3.
Methanospirillum hungatei GP1 contained 50% of its ether core lipids (polar lipids less head groups) as tetraether lipids, and its plasma membrane failed to fracture along its hydrophobic domain during freeze-etching. The membrane of Methanosaeta ("Methanothrix") concilii did not contain tetraether lipids and easily fractured to reveal typical intramembranous particles. Methanococcus jannaschii grown at 50 degrees C contained 20% tetraether core lipids, which increased to 45% when cells were grown at 70 degrees C. The frequency of membrane fracture was reduced as the membrane-spanning tetraether lipids approached 45%. As the tetraether lipid content increased, and while fracture was still possible, the particle density in the membrane increased; these added particles could be tetraether lipid complexes torn from the opposing membrane face. The diether membrane (no tetraether lipid) of Methanococcus voltae easily fractured, and the intramembranous particle density was low. Protein-free liposomes containing tetraether core lipids (ca. 45%) also did not fracture, whereas those made up exclusively of diether lipids did split, indicating that tetraether lipids add considerable vertical stability to the membrane. At tetraether lipid concentrations below 45%, liposome bilayers fractured to reveal small intramembranous particles which we interpret to be tetraether lipid complexes.  相似文献   

4.
Liquid chromatography-tandem mass spectrometry of membrane lipid cores from Sulfolobus species reveals isomeric forms of ring-containing isoprenoid glycerol dialkyl glycerol tetraether components not previously recognised via the use of NMR and liquid chromatography-mass spectrometry techniques. Equivalent isomerism was confirmed for the components in other hyperthermophilic genera and in sediments which contain the lipids of mesophilic archaea. The recognition of the isomeric structures in distinct archaeal clades suggests that profiles of tetraether lipids reported previously may have oversimplified the true lipid complexity in archaeal cultures and natural environments. Accordingly, the extent of variation in tetraether structures revealed by the work should direct more informative interpretations of lipid profiles in the future. Moreover, the results emphasise that tandem mass spectrometry provides a unique capability for assigning the structures of intact tetraether lipid cores for co-eluting species during chromatographic separation.  相似文献   

5.
In extreme environments, mainly Archaea are encountered. The archaeal cytoplasmic membrane contains unique ether lipids that cannot easily be degraded, are temperature- and mechanically resistant, and highly salt tolerant. Moreover, thermophilic and extreme acidophilic Archaea possess membrane-spanning tetraether lipids that form a rigid monolayer membrane which is nearly impermeable to ions and protons. These properties make the archaeal lipid membranes more suitable for life and survival in extreme environments than the ester-type bilayer lipids of Bacteria or Eukarya. Received: January 22, 1998 / Accepted: February 16, 1998  相似文献   

6.
Intact core tetraether membrane lipids of marine planktonic Crenarchaeota were quantified in water column-suspended particulate matter obtained from four depth intervals ( approximately 70, 500, 1,000 and 1,500 m) at seven stations in the northwestern Arabian Sea to investigate the distribution of the organisms at various depths. Maximum concentrations generally occurred at 500 m, near the top of the oxygen minimum zone, and the concentrations at this depth were, in most cases, slightly higher than those in surface waters. In contrast, lipids derived from eukaryotes (cholesterol) and from eukaryotes and bacteria (fatty acids) were at their highest concentrations in surface waters. This indicates that these crenarchaeotes are not restricted to the photic zone of the ocean, which is consistent with the results of recent molecular biological studies. Since the Arabian Sea has a strong oxygen minimum zone between 100 and 1,000 m, with minimum oxygen levels of <1 microM, the abundance of crenarchaeotal membrane lipids at 500 m suggests that planktonic Crenarchaeota are probably facultative anaerobes. The cell numbers we calculated from the concentrations of membrane lipids are similar to those reported for the Central Pacific Ocean, supporting the recent estimation of M. B. Karner, E. F. DeLong, and D. M. Karl ( Nature 409:507-510, 2001) that the world's oceans contain ca. 10(28) cells of planktonic Crenarchaeota.  相似文献   

7.
The lipid cores from Ignisphaera aggregans, a hyperthermophilic Crenarchaeon recently isolated from New Zealand hot springs, have been profiled by liquid chromatography–tandem mass spectrometry. The distribution revealed includes relatively high proportions of monoalkyl (also known as H-shaped) tetraether cores which have previously been implicated as kingdom-specific biomarkers for the Euryarchaeota. Such high expression of monoalkyl tetraether lipids is unusual in the archaeal domain and may indicate that formation of these components is an adaptive mechanism that allows I. aggregans to regulate membrane behaviour at high temperatures. The observed dialkyl tetraether and monoalkyl tetraether lipid distributions are similar but not fully concordant, showing differences in the average number of incorporated rings. The similarity supports a biosynthetic route to the ring-containing dialkyl and monoalkyl tetraether lipids via a dialkyl tetraether core containing zero rings, or a closely related structural relative, as an intermediate. Currently, however, the precise nature of the biosynthetic route to these lipids cannot be deduced.  相似文献   

8.
Membranes composed of bipolar tetraether lipids have been studied by a series of 25-ns molecular dynamics simulations to understand the microscopic structure and dynamics as well as membrane area elasticity. By comparing macrocyclic and acyclic tetraether and diether archaeal lipids, the effect of tail linkage of the two phytanyl-chained lipids on the membrane properties is elucidated. Tetraether lipids show smaller molecular area and lateral mobility. For the latter, calculated diffusion coefficients are indeed one order-of-magnitude smaller than that of the diether lipid. These two tetraether membranes are alike in many physical properties except for membrane area elasticity. The macrocyclic tetraether membrane shows a higher elastic area expansion modulus than its acyclic counterpart by a factor of three. Free energy profiles of a water molecule crossing the membranes show no major difference in barrier height; however, a significant difference is observed near the membrane center due to the lack of the slip-plane in tetraether membranes.  相似文献   

9.
The archaea are distinguished by their unique isoprenoid ether lipids, which typically consist of the sn-2,3-diphytanylglycerol diether or sn-2,3-dibiphytanyldiglycerol tetraether core modified with a variety of polar headgroups. However, many hyperthermophilic archaea also synthesize tetraether lipids with up to four pentacyclic rings per 40-carbon chain, presumably to improve membrane thermal stability at temperatures up to∼110 °C. This study aimed to correlate the ratio of tetraether to diether core lipid, as well as the presence of pentacyclic groups in tetraether lipids, with growth temperature for the hyperthermophilic archaeon, Archaeoglobus fulgidus. Analysis of the membrane core lipids of A. fulgidus using APCI–MS analysis revealed that the tetraether-to-diether lipid ratio increases from 0.3 ± 0.1 for cultures grown at 70°C to 0.9 ± 0.1 for cultures grown at 89°C. Thin-layer chromatography (TLC) followed by APCI–MS analysis provided evidence for no more than one pentacycle in the hydrocarbon chains of tetraether lipid from cultures grown at 70°C and up to 2 pentacycles in the tetraether lipid from cultures grown at higher temperatures. Analysis of the polar lipid extract using TLC and negative-ion ESI–MS suggested the presence of diether and tetraether phospholipids with inositol, glycosyl, and ethanolamine headgroup chemistry.  相似文献   

10.
The archaeal plasma membrane consists mainly of diether lipids and tetraether lipids instead of the usual ester lipids found in other organisms. Although a molecule of tetraether lipid is thought to be synthesized from two molecules of diether lipids, there is no direct information about the biosynthetic pathway(s) or intermediates of tetraether lipid biosynthesis. In this study, we examined the effects of the fungal squalene epoxidase inhibitor terbinafine on the growth and ether lipid biosyntheses in the thermoacidophilic archaeon Thermoplasma acidophilum. Terbinafine was found to inhibit the growth of T. acidophilum in a concentration-dependent manner. When growing T. acidophilum cells were pulse-labeled with [2-(14)C]mevalonic acid in the presence of terbinafine, incorporation of radioactivity into the tetraether lipid fraction was strongly suppressed, while accumulation of radioactivity was noted at the position corresponding to diether lipids, depending on the concentration of terbinafine. After the cells were washed with fresh medium and incubated further without the radiolabeled substrate and the inhibitor, the accumulated radioactivity in the diether lipid fraction decreased quickly while that in the tetraether lipids increased simultaneously, without significant changes in the total radioactivity of ether lipids. These results strongly suggest that terbinafine inhibits the biosynthesis of tetraether lipids from a diether-type precursor lipid(s). The terbinafine treatment will be a tool for dissecting tetraether lipid biosynthesis in T. acidophilum.  相似文献   

11.
Because archaea are generally associated with extreme environments, detection of nonthermophilic members belonging to the archaeal division Crenarchaeota over the last decade was unexpected; they are surprisingly ubiquitous and abundant in nonextreme marine and terrestrial habitats. Metabolic characterization of these nonthermophilic crenarchaeotes has been impeded by their intractability toward isolation and growth in culture. From studies employing a combination of cultivation and molecular phylogenetic techniques (PCR-single-strand conformation polymorphism, sequence analysis of 16S rRNA genes, fluorescence in situ hybridization, and real-time PCR), we present evidence here that one of the two dominant phylotypes of Crenarchaeota that colonizes the roots of tomato plants grown in soil from a Wisconsin field is selectively enriched in mixed cultures amended with root extract. Clones recovered from enrichment cultures were found to group phylogenetically with sequences from clade C1b.A1. This work corroborates and extends our recent findings, indicating that the diversity of the crenarchaeal soil assemblage is influenced by the rhizosphere and that mesophilic soil crenarchaeotes are found associated with plant roots, and provides the first evidence for growth of nonthermophilic crenarchaeotes in culture.  相似文献   

12.
The 16S ribosomal DNA based distinction between the bacterial and archaeal domains of life is strongly supported by the membrane lipid composition of the two domains; Bacteria generally contain dialkyl glycerol diester lipids, whereas Archaea produce isoprenoid dialkyl glycerol diether and membrane-spanning glycerol dialkyl glycerol tetraether (GDGT) lipids. Here we show that a new group of ecologically abundant membrane-spanning GDGT lipids, containing branched instead of isoprenoid carbon skeletons, are of a bacterial origin. This was revealed by examining the stereochemistry of the glycerol moieties of those branched tetraether membrane lipids, which was found to be the bacterial 1,2-di-O-alkyl-sn-glycerol stereoconfiguration and not the 2,3-di-O-alkyl-sn-glycerol stereoconfiguration as in archaeal membrane lipids. In addition, unequivocal evidence for the presence of cyclopentyl moieties in these bacterial membrane lipids was obtained by NMR. The biochemical traits of biosynthesis of tetraether membrane lipids and the formation of cyclopentyl moieties through internal cyclization, which were thought to be specific for the archaeal lineage of descent, thus also occur in the bacterial domain of life.  相似文献   

13.
Black lipid membranes were formed of tetraether lipids from Thermoplasma acidophilum and compared to the bilayer forming lipids diphytanoylphosphatidylcholine and diphythanylglucosylglycerol. Bilayer-forming lipids varied in thickness of black lipid membranes due to the organic solvent used. Measurements of the specific membrane capacitance (Cm = 0.744 microF/cm2) showed that the membrane-spanning tetraether lipids from Thermoplasma acidophilum form a monolayer of a constant thickness of 2.5-3.0 nm no matter from which solvent. This finding corresponds to the results of Gliozzi et al. for the lipids of another archaebacterium, Sulfolobus solfataricus. Black lipid membranes were formed at room temperature with a torus from bilayer-forming lipids, however, the torus could also be formed by the tetraether-lipid itself at room temperature and at defined concentration. In these stable black lipid membranes, conductance was measured in the presence of valinomycin, nonactin, and gramicidin. At 10(-7) M concentration, valinomycin mediated higher conductance in membranes from tetraether lipids (200-1200 microS/cm2) than from bilayer-forming lipids (125-480 microS/cm2). Nonactin, at 10(-6) M concentration, mediated a 6-fold higher conductance in a tetraether lipid membrane than in a bilayer, whereas conductance, in the presence of 5 x 10(-11) M gramicidin could reach higher values in bilayers than in tetraether lipid monolayers of comparable thickness. Monensin did not increase the conductance of black lipid membranes from tetraether lipids under all conditions applied in our experiments. Poly(L-lysine) destroyed black lipid membranes. Lipopolysaccharides from Thermoplasma acidophilum were not able to form stable black lipid membranes by themselves. The lipopolysaccharide complexes from Thermoplasma acidophilum and from Escherichia coli decreased the valinomycin-mediated conductance of monolayer and bilayer membranes. This influence was stronger than that of the polysaccharide dextran.  相似文献   

14.
The structures of three of the major polar lipids (PNL1a, GL1a, and PNGL1) of Methanobacterium thermoautotrophicum were elucidated. These lipids are derivatives of dibiphytanyl diglycerol tetraether (C40 tetraether; the proposed name is caldarchaeol). PNL1a is a C40 tetraether analog of phosphatidylethanolamine (proposed name: caldarchaetidylethanolamine). GL1a was identified as beta-D-glucopyranosyl-(1-6)-beta-D-glucopyranosyl C40 tetraether (diglucosyl caldarchaeol). PNGL1 has the polar head groups of both PNL1a and GL1a; one of the free hydroxyls of this tetraether is esterified with phosphoethanolamine while the other is linked to a glucosylglucose residue with the same structure as that of GL1a (proposed name: diglucosyl caldarchaetidylethanolamine). That is, PNL1a (aminophospholipid), GL1a (glycolipid), and PNGL1 (aminophosphoglycolipid) form structurally a quartet of lipids with the bare caldarchaeol. We propose a new systematic nomenclature of archaebacterial polar lipids in the "DISCUSSION," because the alternative names are too lengthy and laboratory designations of these lipids are not at all systematic. This nomenclature starts with giving the names archaeol and caldarchaeol to dialkyl diether of glycerol or other polyol and tetraether of glycerol or other polyol and alkyl alcohols, respectively, because these lipids are specific to archaebacteria. Phospholipids with a phosphodiester bond were named as derivatives of archaetidic acid or caldarchaetidic acid (phosphomonoesters of archaeol and caldarchaeol) by analogy with phosphatidic acid.  相似文献   

15.
To explore whether the crenarchaeal consortium found in the rhizosphere is distinct from the assemblage of crenarchaeotes inhabiting bulk soil, PCR-single-stranded-conformation polymorphism (PCR-SSCP) profiles were generated for 76 plant samples collected from native environments. Divergent terrestrial plant groups including bryophytes (mosses), lycopods (club mosses), pteridophytes (ferns), gymnosperms (conifers), and angiosperms (seed plants) were collected for this study. Statistical analysis revealed significant differences between rhizosphere and bulk soil PCR-SSCP profiles (Hotelling paired T2 test, P < 0.0001), suggesting that a distinct crenarchaeal consortium is associated with plants. In general, phylotype richness increased in the rhizosphere compared to the corresponding bulk soil, although the range of this increase was variable. Examples of a major change in rhizosphere (versus bulk soil) PCR-SSCP profiles were detected for all plant groups, suggesting that crenarchaeotes form associations with phylogenetically diverse plants in native environments. In addition, examples of minor to no detectable difference were found for all terrestrial plant groups, suggesting that crenarchaeal associations with plants are mediated by environmental conditions.  相似文献   

16.
The synthesis of novel archaeal lipid analogues is described. The hydrophobic core of these tetraether bipolar lipids were based on a disubstituted 1,3-cyclopentane unit which was further equipped with mannosyl polar head groups. This hemimacrocylcic tetraether structure that can be compared to rare archaeal lipids permit to establish the behavior of such bipolar lipid at the air/water interface. The two oxygen atoms and the cyclopentane ring were found to be of importance on this behavior. Indeed, the air/water interface comparative study of tetraether- and diether-type lipids led to conclusions on a bent conformation of the tetraether at the air/water interface in the presence of a cyclopentane unit even if the presence of the two oxygen atoms favored an opened bent shape at the beginning of the compression.  相似文献   

17.
Abstract The ratios of tetraether to diether type lipids in the total lipid during cell growth in batch cultures of Methanobacterium thermoautotrophicum ΔH (DSM 1053) were examined. The proportion of tetraether type lipids to the total lipid was about 80% during the log phase, and at the onset of the transient phase it began to rise up to about 93%. It was kept almost constant at that level throughout the stationary phase. The polar lipid composition changed with the age of the cell culture. The proportions of all the diether type polar lipids were lower and the levels of all tetraether type polar lipids were higher in the stationary phase than in the log phase. On the other hand, the composition of polar head groups, irrespective of the core lipids, was nearly constant in both growth phases measured so far despite the change in core lipid composition.  相似文献   

18.
Individual di(biphytanyl) diglycerol tetraether lipids from thermoacidophile archaebacteria of the Caldariella series, with differently cyclized biphytanyl components, are separated and shown to have structures 8–12, with the glycerol and biphytanyl components demonstrably both antiparallel and with partial assignments of stereochemistry. Tetraethers with alternative arrangements of the components are absent. The structures allow previous observations on these and related lipids to be rationalized both biosynthetically and phyletically.  相似文献   

19.
The lipids of the Caldariella group of extremely thermophilic acidophilic bacteria are based on a 72-membered macrocyclic tetraether made up from two C40 diol units and either two glycerol units or one glycerol and one nonitol. The C40 components have the 16,16′-biphytanyl skeleton and the detailed structure of three of them is established.  相似文献   

20.
The membrane lipids of archaea are characterized by unique isoprenoid biochemistry, which typically is based on two core lipid structures, sn-2,3-diphytanylglycerol diether (archaeol) and sn-2,3-dibiphytanyldiglycerol tetraether (caldarchaeol). The biosynthetic pathway for the tetraether lipid entails unprecedented head-to-head coupling of isoprenoid intermediates by an unknown mechanism involving unidentified enzymes. To investigate the isoprenoid ether lipid biosynthesis pathway of the hyperthermophilic archaeon, Archaeoglobus fulgidus, its lipid synthesis machinery was reconstructed in an engineered Escherichia coli strain in an effort to demonstrate, for the first time, efficient isoprenoid ether lipid biosynthesis for the production of the intermediate, digeranylgeranylglyceryl phosphate (DGGGP). The biosynthesis of DGGGP was verified using an LC/MS/MS technique and was accomplished by cloning and expressing the native E. coli gene for isopentenyl diphosphate (IPP) isomerase (idi), along with the A. fulgidus genes for G1P dehydrogenase (egsA) and GGPP synthase (gps), under the control of the lac promoter. The A. fulgidus genes for GGGP synthase (GGGPS) and DGGGP synthase (DGGGPS), under the control of the araBAD promoter, were then introduced and expressed to enable DGGGP biosynthesis in vivo. This investigation established roles for four A. fulgidus genes in the isoprenoid ether lipid pathway for DGGGP biosynthesis and provides a platform useful for identification of subsequent, currently unknown, steps in tetraether lipid biosynthesis proceeding from DGGGP, which is the presumed substrate for the head-to-head coupling reaction yielding unsaturated caldarchaeol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号