首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Water uptake in vivo, and water fluxes across the isolated skin were studied in salt (NaCl) acclimated toads. 2. Water uptake of acclimated toads maintained in the solution of acclimation, decreased with the environmental salinity. 3. The osmotic water permeability (Pos) of the skin increased upon salt (NaCl) acclimation, both in vivo and in vitro. 4. Pos of the skin of toads acclimated to non-permeant solutes such as sucrose (230 mmol/l) or mannitol (400 nmol/l), was greatly reduced. 5. Oxytocin (syntocinon) increased the Pos both in tap water and salt acclimated toads. In high salt (greater than 200 mmol/l NaCl) acclimated toads however, the increased Pos and water flux at larger osmotic gradients, could not be stimulated further by the hormone. 6. The adaptive nature of the selective changes in the permeability properties of the skin under salt acclimation conditions is discussed.  相似文献   

2.
Body water (weight) was studied in the euryhaline toad Bufo viridis during high salt (500 mOsm NaCl) acclimation. Plasma osmolality was greatly increased upon salt acclimation mainly by urea, and was always hyperosmotic to the ambient solution. Water content was regulated quite efficiently in slowly acclimated undisturbed toads. Repeatedly catheterized toads behaved like osmometers when transferred to hyperosmotic solutions. Total urea loss was greatly reduced in salt acclimated toads, suggesting urine was not voided under these conditions. It is concluded that urea accumulation, inhibition of the urine voiding response and the urine in the bladder are the principal factors involved in volume regulation under conditions of salt acclimation.  相似文献   

3.
The effect of dilution of the interstitial fluids on the responsiveness of the toad urinary bladder to antidiuretic hormones has been examined in vivo and in vitro. Toads were given periodic injections with vasopressin while in water so that their plasma osmolality fell below 190 mosmoles/kg H2O. The hydraulic conductivity of bladders which had been removed from the animal and fixed with 1% glutaraldehyde was 10-fold less in overhydrated toads than in normally hydrated controls. A similar inhibitory phenomenon was observed in in vitro studies, when the tonicity of Ringer's fluid in which the bladders were suspended was lowered from its isotonic value. Mannitol, but not urea, could be effectively substituted for one-half of the NaCl content of Ringer's fluid. In other experiments it has been shown that the responsiveness of the bladder to vasotocin is depressed during bulk water movement across the tissue. This "flux inhibition" was found to depend upon the velocity and the duration of water flow from mucosa to the serosa. It is suggested that the responsiveness of the toad bladder to antidiuretic hormones diminishes as the effective osmotic pressure of the interstitial fluids declines.  相似文献   

4.
1. Urea synthesis was studied in isolated perfused rat liver during cell volume regulatory ion fluxes following exposure of the liver to anisotonic perfusion media. Lowering of the osmolarity in influent perfusate from 305 mOsm/l to 225 mOsm/l (by decreasing influent [NaCl] by 40 mmol/l) led to an inhibition of urea synthesis from NH4Cl (0.5 mmol/l) by about 60% and a decrease of hepatic oxygen uptake by 0.43 +/- 0.03 mumol g-1 min-1 [from 3.09 +/- 0.13 mumol g-1 min-1 to 2.66 +/- 0.12 mumol g-1 min-1 (n = 9)]. The effects on urea synthesis and oxygen uptake were observed throughout hypotonic exposure (225 mOsm/l). They persisted although volume regulatory K+ efflux from the liver was complete within 8 min and were fully reversible upon reexposure to normotonic perfusion media (305 mOsm/l). A 42% inhibition of urea synthesis from NH4Cl (0.5 mmol/l) during hypotonicity was also observed when the perfusion medium was supplemented with glucose (5 mmol/l). Urea synthesis was inhibited by only 10-20% in livers from fed rats, and was even stimulated in those from starved rats when an amino acid mixture (twice the physiological concentration) plus NH4Cl (0.2 mmol/l) was infused. 2. The inhibition of urea synthesis from NH4Cl (0.5 mmol/l) during hypotonicity was accompanied by a threefold increase of citrulline tissue levels, a 50-70% decrease of the tissue contents of glutamate, aspartate, citrate and malate, whereas 2-oxoglutarate, ATP and ornithine tissue levels, and the [3H]inulin extracellular space remained almost unaltered. Further, hypotonic exposure stimulated hepatic glutathione (GSH) release with a time course roughly paralleling volume regulatory K+ efflux. NH4Cl stimulated lactate release from the liver during hypotonic but not during normotonic perfusion. In the absence of NH4Cl, hypotonicity did not significantly affect the lactate/pyruvate ratio in effluent perfusate. With NH4Cl (0.5 mmol/l) present, the lactate/pyruvate ratio increased from 4.3 to 8.2 in hypotonicity, whereas simultaneously the 3-hydroxybutyrate/acetoacetate ratio slightly, but significantly decreased. 3. Addition of lactate (2.1 mmol/l) and pyruvate (0.3 mmol/l) to influent perfusate did not affect urea synthesis in normotonic perfusions, but completely prevented the inhibition of urea synthesis from NH4Cl (0.5 mmol/l) induced by hypotonicity. Restoration of urea production in hypotonic perfusions by addition of lactate and pyruvate was largely abolished in the presence of 2-cyanocinnamate (0.5 mmol/l). Addition of 3-hydroxybutyrate (0.5 mmol/l), but not of acetoacetate (0.5 mmol/l) largely reversed the hypotonicity-induced inhibition of urea synthesis from NH4Cl.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
In osmoregulating teleost fish, urea is a minor nitrogen excretory product, whereas in osmoconforming marine elasmobranchs it serves as the major tissue organic solute and is retained at relatively high concentrations ( approximately 400 mmol/l). We tested the hypothesis that urea transport across liver mitochondria is carrier mediated in both teleost and elasmobranch fishes. Intact liver mitochondria in rainbow trout (Oncorhynchus mykiss) demonstrated two components of urea uptake, a linear component at high concentrations and a phloretin-sensitive saturable component [Michaelis constant (K(m)) = 0.58 mmol/l; maximal velocity (V(max)) = 0.12 mumol.h(-1).mg protein(-1)] at lower urea concentrations (<5 mmol/l). Similarly, analysis of urea uptake in mitochondria from the little skate (Raja erinacea) revealed a phloretin-sensitive saturable transport (K(m) = 0.34 mmol/l; V(max) = 0.054 mumol.h(-1).mg protein(-1)) at low urea concentrations (<5 mmol/l). Surprisingly, urea transport in skate, but not trout, was sensitive to a variety of classic ionophores and respiration inhibitors, suggesting cation sensitivity. Hence, urea transport was measured in the reverse direction using submitochondrial particles in skate. Transport kinetics, inhibitor response, and pH sensitivity were very similar in skate submitochondrial particle submitochondrial particles (K(m) = 0.65 mmol/l, V(max) = 0.058 mumol.h(-1).mg protein(-1)) relative to intact mitochondria. We conclude that urea influx and efflux in skate mitochondria is dependent, in part, on a bidirectional proton-sensitive mechanism similar to bacterial urea transporters and reminiscent of their ancestral origins. Rapid equilibration of urea across the mitochondrial membrane may be vital for cell osmoregulation (elasmobranch) or nitrogen waste excretion (teleost).  相似文献   

6.
Summary Osmoregulation in the terrestrial toad,Bufo viridis, was studied under burrowing conditions in the laboratory. The toads can live for over 3 months burrowed in soil containing 9–10% moisture, maintaining constant body volume due to a large increase in the plasma osmolality, contributed mainly by urea. Water content of the tissues remains constant. Relatively large volumes of urine are stored in the urinary bladder during water restriction. The osmolality of the urine does not exceed that of the plasma. Urea uptake across the skin was measured in vitro and was greatly elevated in skins from the burrowed toads. The increase in plasma osmolality enables greater water absorption from the soil under water restricted conditions while the water content of the tissues is maintained constant since cell membranes are highly permeable to urea. It is concluded that the urea accumulating ability and urea tolerance form the basis for both the terrestriality and salt adaptability of this and other amphibian species.  相似文献   

7.
The urinary bladder of Bufo marinus has been shown to excrete H+ and NH4+ and this excretion is increased by metabolic acidosis. The involvement of the adrenal gland and its steroid secretions in the adaptation for increased acid and ammonia excretion by the bladder was tested during the course of this study. Groups of toads were adrenalectomized and maintained in chronic NH4Cl-induced acidosis. Three other groups of toads were adrenalectomized and put in acidosis but repleted with 2.5 mg/day of either cortisol (CT), dexamethasone (Dexa), or deoxycorticosterone acetate (DOCA). All control groups were sham-operated. The bladders were excised after 3 days and mounted between 2-ml Lucite chambers. Net H+ and NH4+ fluxes into the mucosal media were measured and reported in units of nanomoles per 100 mg bladder per minute. In control acidotic toads H+ excretion was 20.1 +/- 2.0 and the adrenalectomized nonreplete group H+ excretion was 14.2 +/- 1.87 (P less than 0.04). For the same groups NH4+ excretion was 2.90 +/- 0.26 for the controls and 1.38 +/- 0.19 for the adrenalectomized (P less than 0.001). The H+ excretion in CT-, Dexa-, and DOCA-repleted toads was not significantly different from the control group. NH4+ excretion, however, showed a 55% decrease (P less than 0.001) in the CT group, and a 45% decrease (P less than 0.05) in the Dexa group. The NH4+ excretion in the DOCA repleted group was significantly different from the control group. Therefore, we conclude that the adrenal gland plays a role in the adaptive increase of H+ and NH4+ excretion by the urinary bladder in acidosis through the secretion of steroid hormones. The increase in NH4+ excretion appears to be a mineralocorticoid-stimulated process. We were not able to determine in this study if the steroid hormones had an exacting regulatory role or one of a permissive role over H+ and NH4+ excretion in the toad urinary bladder.  相似文献   

8.
The purpose of this study was to determine whether phospholipids (PL) play a role in the adaptation to metabolic acidosis by toad urinary bladder epithelium. Toads were placed in an NH4Cl acidosis for 48 hr. Quarter bladders were removed and incubated with [32P]orthophosphate or [3H]arachidonic acid for 1 hr at 25 degrees C. PL were detected by thin layer chromatography, autoradiography, and quantitated by liquid scintillation counting or fractional amounts were determined from phosphate content and expressed as counts per minute per micromolar of total phosphate or as percentage of fraction of total PL. Incorporation of [3H]arachidonic acid into urinary bladder PL was measured in acidotic and normal toads. There was a higher rate of arachidonic acid incorporation into several PL in acidotic animals. Phosphatidic acid and phosphatidylserine fraction in acidosis was 37,705 +/- 6,821 and in normal bladders was 9,254 +/- 2,652 (P less than 0.005); phosphatidylcholine fraction in acidotic toads was 80,462 +/- 16,862 and in normal bladders was 26,892 +/- 5,198 (P less than 0.025); and the phosphatidylethanolamine (PE) fraction in acidotic was 48,665 +/- 10,998 and in normal animals was 17,441 +/- 3,905 (P less than 0.025). 32P labeling revealed a higher rate of incorporation in bladders from acidotic toads compared with normal toads. In the acidotic bladders, the phosphatidic acid and phosphatidylserine fraction was 19,754 +/- 3,597 and in normal bladders was 12,980 +/- 1,394 (P less than 0.05) and for PE acidotic bladders was 9,129 +/- 1,304 and in normal bladders was 3,285 +/- 416 (P less than 0.001). Fractional PL (reported as percentage of fraction of total PL based on total lipid phosphorus) analysis in normal toads revealed phosphatidylinositol = 8.1 +/- 0.6% and PE = 27 +/- 1.2%, whereas for acidotic toads phosphatidylinositol = 11 +/- 0.6% and PE = 32 +/- 1.0% (P less than 0.01 for both). Aldosterone, a known stimulator of acidification, had no effect on 32P incorporation into PL fractions of the bladder. The increase in PL turnover following induction of acidosis is consistent with increased membrane synthesis or turnover during metabolic acidosis and this may reflect an increased transport of vesicular H+-ATPase into the apical membrane or the result of a proliferation of acid-secreting mitochondria-rich cells or both.  相似文献   

9.
Green toads (Bufo viridis) were acclimated to either tap water, 230 mOsmol NaCl kg-1 H2O (saline), 500 mOsmol NaCl kg-1 H2O (high saline), or 500 mmol L-1 urea. Renal functions for each acclimation group were studied on conscious animals that had one ureter chronically catheterized. Reciprocal immersion of tap-water- and saline-acclimated toads in the opposite solution did not stress the animals osmotically, and plasma osmolality increased or decreased by no more than 15%. However, urine osmolality and ionic composition changed immediately and profoundly on exposure to the other solution. Exposure of tap-water-acclimated toads to saline decreased urine flow by 30%, whereas the reciprocal immersion led to an increase of 30%. Immersion of tap-water-acclimated toads in high saline led to immediate cessation of urine flow, whereas immersion of 500 NaCl- or urea-acclimated toads in tap water led to a large increase in urine flow, with an overshoot that lasted 10 h (as a result of either salt or urea diuresis). Urine flow then stabilized at a level 5-6 times higher than the value attained at high-salt environment. On immersion of 500 urea-acclimated toads in 500 NaCl, urine flow doubled, accompanied by a change in ion composition, without change in the osmolality. In all experimental conditions, plasma potassium concentration was maintained within a narrow range. The results show that the toad's kidneys contributed efficiently both to osmo- and ionoregulation in a wide range of ambient solutions.  相似文献   

10.
Dissections of >1,200 wild-caught cane toads (Rhinella marina) in tropical Australia confirm a laboratory report that anurans can expel foreign objects from the coelom by incorporating them into the urinary bladder. The foreign objects that we found inside bladders included a diverse array of items (e.g., grass seeds, twigs, insect prey, parasites), many of which may have entered the coelom via rupture of the gut wall. In some cases, the urinary bladder was fused to other organs including liver, fat bodies, ovaries, Bidder’s organs, lungs, mesentery, stomach wall, gall bladder, and the abdominal wall. Acanthocephalan parasites (of a range of developmental stages) were identified from the walls of the urinary bladders of three cane toads. This organ may play a significant role in destroying or excreting metazoan parasites, as well as inanimate objects.  相似文献   

11.
C Manesh  G Kuttan 《Phytomedicine》2005,12(6-7):487-493
Cyclophosphamide-induced urotoxiciy was reduced in Swiss albino mice by the treatment of naturally occurring isothiocyanates such as AITC or PITC (25 microg/dose/animal, i.p.) for 5 days along with CTX (1.5 mmol/kg body wt.; i.p.). Severely inflamed and dark coloured urinary bladders of the CTX alone treated animals were found to be normalized on morphological analysis by the treatment of AITC or PITC. Urine protein levels were reduced by the treatment with AITC (6.2 +/- 0.37 g/l) and PITC (6.56 +/- 1.56 g/l), which was elevated by CTX administration (8.66 +/- 0.47 g/l). Urine urea N2 that was enhanced significantly by CTX administration (26.87 +/- 1.86 g/l) was reduced by treatment with both AITC (17.38 +/- 0.06 g/l) and PITC (15.85 +/- 1.56 g/l). GSH content, which was drastically reduced by CTX administration in both bladder (0.87 +/- 0.1 nmol/mg protein) and liver (2.47 +/- 0.6 nmol/mg protein) was enhanced by treatment with AITC and PITC both in bladder (AITC- 3.65 +/- 0.18 nmol/mg protein; PITC- 2.8 +/- 0.15 nmol/mg protein) and in liver (AITC- 4.10 +/- 0.81 nmol/mg protein; PITC- 4.70 +/- 0.44 nmol/mg protein). Histopathology of the bladders of CTX alone treated group showed severe necrosis of the tissue whereas AITC and PITC treated group showed normal bladder pathology.  相似文献   

12.
P L Gigon  M H Bickel 《Enzyme》1979,24(4):230-238
Microsomal fraction contains the whole of hepatic UDP-glucuronyltransferase as well as part of beta-glucuronidase. The activities of the two enzymes were assayed under identical conditions using untreated male rat liver microsomes at pH 7.5. In a 30-min incubation with p-nitrophenol and UPD-glucuronic acid, a net glucuronide formation of 0.010 mumol.min-1.g.liver-1 was measured. In the presence of saccharolactone at concentrations selectively blocking beta-glucuronidase, the glucuronidation rate was 0.015 mumol.min-1.g.liver-1. Using the kinetic parameters of beta-glucuronidase (Km = 0.06 mmol/l p-nitrophenylglucuronide, Vm = 0.075 mumol pNP formed.h-1.g.liver-1) determined in the absence of UDP-glucuronic acid, to correct for the beta-glucuronidase's interference on the glucuronidation process, a glucuronide formation of 0.011 mumol.min-1.g.liver-1 was calculated.  相似文献   

13.
This study was done to determine if insulin mediates H+ and NH+4 excretion in the urinary bladder of Bufo marinus. Acidosis was induced by gavaging with 10 ml of 120 mM NH4Cl 3X daily for 2 days. Hemibladders were mounted between Lucite chambers. Insulin (porcine) was added to the serosal solution of the experimental bladder (10(2) mU/ml). After a 15-min equilibration the flux was measured for 2 hr. H+ excretion was measured from change in pH of the mucosal fluid and the NH+4 measured colorimetrically. The excretion was normalized for weight of bladder and reported in units of nanomoles (100 mg bladder)-1(min)-1. Plasma insulin was determined by radioimmunoassay and glucose by the glucose oxidase method. In 14 control bladders H+ excretion was 8.75 +/- 1.28 and experimental was 16.35 +/- 2.50 (P less than 0.025), while NH+4 excretion in control bladder was 3.29 +/- 0.95 and experimental was 6.58 +/- 1.89 (P less than 0.01). This response was absent when the insulin was heat inactivated (P greater than 0.2 and P greater than 0.3 respectively). Plasma insulin-like levels in 10 normal toads was 0.57 +/- 0.16 ngm/ml and in acidotic toads 1.25 +/- 0.16 ng/ml (P less than 0.025). Plasma glucose levels in 10 normal toads were 22.0 +/- 3.5 mg/dl and in 12 acidotic toads 17.8 +/- 0.75 mg/dl (P less than 0.025). We conclude that plasma insulin is increased in acidosis and that insulin stimulates excretion of H+ and NH+4 in the toad urinary bladder.  相似文献   

14.
Summary The urinary bladder ofBufo marinus excretes H+ and NH 4 + , and the H+ excretion is increased when the animal is placed in metabolic acidosis. The mitochondriarich (MR) cells mediate the H+ excretion by the bladder. The purpose of this study was to determine if there is a change in MR cells of the bladder during metabolic acidosis. Bladders from normal toads and from toads that had been placed in metabolic acidosis were used. The bladders were mounted between plastic chambers and H+ excretion measured. The bladder was then fixed and prepared for scanning (SEM) and transmission (TEM) electron micrograph studies. SEM's at low magnification were used to count the various cell types and the TEM's were used to confirm the different cell types. Fields were randomly selected and a total of 2500 cells counted in each group. The bladders from toads in metabolic acidosis had a consistently higher ratio of MR cells to granular cells than did the normal bladders. These results indicate that during metabolic acidosis there is an increased number of MR cells in the bladder, and this increases the bladder's capacity to excrete H+.  相似文献   

15.
Scanning electron-microscopy (SEM) was used to investigate the hydrosmotic effect of vasopressin on the apical surface of urinary bladders of toads Bufo marinus. Bladders were mounted on glass chambers and water fluxes were monitored with an optical method. Tissues were fixed in 2% glutaraldehyde and processed for SEM. Three types of cells were seen on the surface of control bladders:large polygonal (granular) cells, with blunt microvilli; smaller (mitochondria-rich) cells, with longer microvilli; goblet cells. Neither exposure of the bladders to a large osmotic gradient nor exposure to vasopressin in the absence of a gradient altered appreciably the epithelial surface. In contrast, the combination of vasopressin and an osmotic gradient resulted ina conspicuous diminution of the blunt microvilli. However, the small cells with longer microvilli remained unchanged. Identical results were seen with cAMP or theophylline in the presence of an osmotic gradient. These findings suggest that the hydrosmotic effect of vasopressin is mainly exerted on the granular cells of toad bladder and confirm observations made by others with the electron-microscope.  相似文献   

16.
  • 1.1. Water absorption response (WR) behavior and water weight gain were examined in hydrated toads, Bufo woodhousei, treated with angiotensin II (All) or with a control Ringer's solution. The effects of urinary bladder condition (ad lib. bladder urine or empty bladder) were examined concurrently.
  • 2.2. Toads treated with All (100μg/100g body weight), spent more time in WR posture and absorbed more water than Ringer's-injected toads.
  • 3.3. Toads with empty bladders maintained WR posture for longer periods of time and gained more weight than toads whose bladders were not emptied.
  • 4.4. The effects of All and bladder urine on water absorption by B. woodhousei appear to be separate and additive.
  相似文献   

17.
The aim of this investigation was to compare the effect of an opioid, D ala2 metenkephalinamide (DAMA), on net jejunal and ileal water and electrolyte fluxes using the gut perfusion technique in the anesthetized cat. Intestinal transport was measured during intravenous infusion of serial doses of 2, 6, and 18 micrograms.kg-1.h-1 of DAMA in 6 cats. Each cat was its own control during an intravenous infusion of 150 mmol/l NaCl preceding the first dose of peptide and following the last dose of DAMA. Both jejunal and ileal segments were isolated by inflated balloons and were studied at the same time. Fifteen ml of an iso-osmolar test solution with hypo-osmolar ion contents and complementary mannitol were administered in the upstream tube and collected 1 h later in the downstream tube. In the jejunum, water secretion was dose-dependently reversed to an absorption from a control value of +0.5 +/- 0.4 to -0.83 +/- 0.5 ml.h-1.10 cm-1; in the ileum, water absorption was increased from -0.5 +/- 0.3 to -1.5 +/- 0.2 ml.h-1.10 cm-1. The net absorption of all electrolytes, ie sodium, chloride, bicarbonate, potassium and calcium also increased during peptide administration. However, a qualitative difference in the ion transport was observed between the jejunum and the ileum.  相似文献   

18.
Rates of urea synthesis were determined in periportal and pericentral regions of the liver lobule in perfused liver from fed, phenobarbital-treated rats by measuring the extra O2 consumed upon infusion of NH4Cl with miniature O2 electrodes and from decreases in NADPH fluorescence detected with micro-light-guides. Urea synthesis by the perfused rat liver supplemented with lactate (5 mM), ornithine (2 mM) and methionine sulfoximine (0.15 mM), an inhibitor of glutamine synthetase, was stimulated by stepwise infusion of NH4Cl at doses ranging from 0.24 mM to 3.0 mM. A good correlation (r = 0.92) between decreases in NADPH fluorescence and urea production was observed when the NH4Cl concentration was increased. Sublobular rates of O2 uptake were determined by placing miniature oxygen electrodes on periportal or pericentral regions of the lobule on the liver surface, stopping the flow and measuring decreases in oxygen tension. From such measurements local rates of O2 uptake were calculated in the presence and absence of NH4Cl and local rates of urea synthesis were calculated from the extra O2 consumed in the presence of NH4Cl and the stoichiometry between O2 uptake and urea formation. Rates of urea synthesis were also estimated from the fractional decrease in NADPH fluorescence, caused by NH4Cl infusion in each region, measured with micro-light-guides and the rate of urea synthesis by the whole organ. When perfusion was in the anterograde direction, maximal rates of urea synthesis, calculated from changes in fluorescence, were 177 +/- 31 mumol g-1 h-1 and 61 +/- 24 mumol g-1 h-1 in periportal and pericentral regions, respectively. When perfusion was in the retrograde direction, however, rates were 76 +/- 23 mumol g-1 h-1 in periportal areas and 152 +/- 19 mumol g-1 h-1 in pericentral regions. During perfusion in the anterograde direction, urea synthesis, calculated by changes in O2 uptake, was 307 +/- 76 mumol g-1 h-1 and 72 +/- 34 mumol g-1 h-1 in periportal and pericentral regions, respectively. When perfusion was in the retrograde direction, urea was synthesized at rates of 54 +/- 17 mumol g-1 h-1 and 387 +/- 99 mumol g-1 h-1 in periportal and pericentral regions, respectively. Thus, maximal rates of urea synthesis were dependent upon the direction of perfusion. In addition, rates of urea synthesis were elevated dramatically in periportal regions when the flow rate per gram liver was increased (e.g. 307 versus 177 mumol g-1 h-1).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
Although mammalian urinary tract epithelium (urothelium) is generally considered impermeable to water and solutes, recent data suggest that urine constituents may be reabsorbed during urinary tract transit and storage. To study water and solute transport across the urothelium in an in vivo rat model, we instilled urine (obtained during various rat hydration conditions) into isolated in situ rat bladders and, after a 1-h dwell, retrieved the urine and measured the differences in urine volume and concentration and total quantity of urine urea nitrogen and creatinine between instilled and retrieved urine in rat groups differing by hydration status. Although urine volume did not change >1.9% in any group, concentration (and quantity) of urine urea nitrogen in retrieved urine fell significantly (indicating reabsorption of urea across bladder urothelia), by a mean of 18% (489 mg/dl, from an instilled 2,658 mg/dl) in rats receiving ad libitum water and by a mean of 39% (2,544 mg/dl, from an instilled 6,204 mg/dl) in water-deprived rats, but did not change (an increase of 15 mg/dl, P = not significant, from an instilled 300 mg/dl) in a water-loaded rat group. Two separate factors affected urea nitrogen reabsorption rates, a urinary factor related to hydration status, likely the concentration of urea nitrogen in the instilled urine, and a bladder factor(s), also dependent on the animal's state of hydration. Urine creatinine was also absorbed during the bladder dwell, and hydration group effects on the concentration and quantity of creatinine reabsorbed were qualitatively similar to the hydration group effect on urea transport. These findings support the notion(s) that urinary constituents may undergo transport across urinary tract epithelia, that such transport may be physiologically regulated, and that urine is modified during transit and storage through the urinary tract.  相似文献   

20.
Recent in vivo evidence suggests that the mechanism of branchial urea excretion in the ammoniotelic rainbow trout (Oncorhynchus mykiss) is carrier-mediated. Further characterization of this proposed mechanism was achieved by using an in vitro isolated basolateral membrane vesicle (BLMV) preparation in which isolated gill membranes were used to determine a variety of physiological properties of the transporter. BLMV demonstrated two components of urea uptake, a linear component at concentrations up to 17.5 mmol x l(-1) and a saturable component (K(0.5)=0.35+/-0.01 mmol x l(-1); V(max)=0.14+/-0.02 micromol mg protein(-1) h(-1)) with a Hill constant of 1.35+/-0.18 at low, physiologically relevant urea concentrations (<2 mmol x l(-1)). Saturable uptake of urea at 1 mmol x l(-1) by BLMV was reduced by 88.5% when incubated with 0.25 mmol x l(-1) phloretin, a potent blocker of UT-type facilitated diffusion urea transport mechanisms. BLMV also demonstrated differential handling of urea versus urea analogues at 1 mmol x l(-1) concentrations and total analogue/total urea uptake ratios were 32% for acetamide and 84% for thiourea. Saturable urea uptake at 1 mmol x l(-1) was significantly reduced by almost 100% in the presence of 5 mmol x l(-1) thiourea but was not affected by 5 mmol x l(-1) acetamide or 5 mmol x l(-1) N-methylurea. Lastly, total urea uptake at 1 mmol x l(-1) by BLMV was sensitive to temperatures above and below the temperature of acclimation with a Q(10)>2 suggesting a protein carrier-mediated process. Combined, this evidence indicates that a facilitated diffusion urea transport mechanism is likely present in the basolateral membrane of the rainbow trout gill.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号