首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
Abstract: A species of water‐penny beetles is recorded from larval instars from the Middle Eocene Messel pit fossil site in Germany. This species clearly belongs to the psephenid subfamily Eubrianacinae, but its precise systematic affinities remain unclear. It is the second fossil species of this taxon recorded from Europe. The holotype of the first fossil species, Eubrianax vandeli Bertrand and Laurentiaux, 1963, is lost. The high number of fossil specimens from Messel allowed discussion of stratigraphic and spatial occurrence of the eubrianacine species in the Messel pit, but its larval ontogeny could not be unravelled. Because of the high number of fossils and their wide occurrence, it is inferred that the species from Messel gen. sp. 1 was an autochthonous faunal element of the Eocene Lake Messel, which might indicate that some parts of the former Lake Messel had a shore area with stones. The analysis of the phylogenetic position of both Eocene eubrianacine species showed that their phylogenetic placement cannot be resolved because preservational influences limit the evaluation of characters. The historical biogeography of Psephenidae and Eubrianacinae is analysed and discussed. The fossil record shows that psephenid beetles have fossil members occurring outside their current distribution range, so interpretations of their biogeography based only on extant members can be misleading.  相似文献   

3.
Abstract

A new Early Eocene bat is described from dental remains recovered from the locality of Prémontré in the Paris Basin, northern France. It is referred to the extinct family Archaeonycteridae, whose members are among the oldest and dentally most plesiomorphic bats. The new archaeonycterid is part of the diverse Prémontré mammal fauna of the late Ypresian (MP10; 50 Ma) which includes a suite of archaic mammals as well as early representatives of modern mammal families. Like other archaeonycterids, this bat may have been an insectivorous perch hunter in paratropical forests that extended into high latitudes during the Early and Middle Eocene. Archaeonycterids disappear from the fossil record after the Middle Eocene, along with many other archaic mammal groups, probably in response to significant changes in climate and habitats as well as competition from crown group bats possibly better adapted to less predictable conditions.

http://zoobank.org/urn:lsid:zoobank.org:act:194C2A09-77A6-460C-93E2-017362FD0DC3  相似文献   

4.
Teleost fishes display a remarkable diversity of adult dentitions; this diversity is all the more remarkable in light of the uniformity of first-generation dentitions. Few studies have quantitatively documented the transition between generalized first-generation dentitions and specialized adult dentitions in teleosts. We investigated this transition in the Mexican tetra, Astyanax mexicanus (Characidae), by measuring aspects of the dentition in an ontogenetic series of individuals from embryos to 160 days old, in addition to adults of unknown age. The first-generation dentition and its immediate successors consist of small, unicuspid teeth that develop extraosseously. Multicuspid teeth first appear during the second tooth replacement event, and are derived from single tooth germs, rather than from the fusion of multiple conical tooth germs. We document that the transition from unicuspid to multicuspid teeth corresponds to a change in the location of developing tooth germs (from extraosseous to intraosseous) and in patterns of tooth replacement (from haphazard to simultaneous within a jaw quadrant). In addition, while the size of the largest teeth scales with positive allometry to fish size, the transition to multicuspid teeth is accompanied by an exceptionally large increase in tooth size.  © 2005 The Linnean Society of London, Zoological Journal of the Linnean Society , 2005, 145 , 523–538.  相似文献   

5.
Rhynchosaurs were key herbivores over much of the world in the Middle and Late Triassic, often dominating their faunas ecologically, and much of their success may relate to their dentition. They show the unique ankylothecodont mode of tooth implantation, with deep roots embedded in the bone of the jaw and low crowns that were rapidly worn down in use. During growth, the main area of oral food processing, located in the middle and posterior portions of the occlusal surfaces of the jaws, moved posteriorly relative to the anterior tips of the jaws, which curved up. As the maxilla and dentary grew by addition of new bone posteriorly, the dental lamina fed in new teeth at the back of the tooth rows. CT scanning of the holotype skull of Bentonyx sidensis from the Middle Triassic of England reveals previously concealed details of the dentition. Together with new dentary material from the same location, this has enabled us to examine the tooth replacement process and elucidate ontogenetic changes in dentition and jaw morphology as the animals aged. There were major changes in rhynchosaur anatomy and function through their evolutionary history, with the early forms of the Middle Triassic dying out before or during the Carnian Pluvial Episode (233–232 Ma), and the subclade Hyperodapedontinae, with broad skulls and adaptations to chop tough vegetation, subsequently diversifying worldwide in a successful ecological expansion until their global extinction 227–225 Ma.  相似文献   

6.
This study describes size of constituent deciduous tooth crown components (enamel, dentine, and pulp) to address the manner in which males characteristically have larger teeth than females, and the observation that teeth of American blacks are larger than those of American whites. Measurements were collected (n = 333 individuals) from bitewing radiographs using computer-aided image analysis. Tissue thicknesses (enamel, dentine, pulp) were measured at the crown's mesial and distal heights of contour. Deciduous mesiodistal molar crown length is composed of about 1/7 enamel, 1/3 dentine, and 1/2 pulp. Details differ by tooth type, but males typically have significantly larger dentine and pulp dimensions than females; there is no sexual dimorphism in marginal enamel thickness. Males scale isometrically with females for all variables tested here. Blacks significantly exceed whites in size of all tissues, but tissue types scale isometrically with blacks and whites with one exception: enamel thickness is disproportionately thick in blacks. While the absolute difference is small (5.56 mm of enamel in blacks summed over all four deciduous molar tooth types vs. 5.04 mm in whites), the statistical difference is considerable (P < 0.001). Aside from enamel, crown size in blacks is increased proportionately vis-à-vis whites. Principal components analysis confirmed these univariate relationships and emphasizes the statistical independence of crown component thicknesses, which is in keeping with the sequential growth and separate embryonic origins of the tissues contributing to a tooth crown. Results direct attention to the rates of enamel and dentine deposition (of which little is known), since the literature suggests that blacks (with larger crowns and thicker enamel) spend less time in tooth formation than whites.  相似文献   

7.
8.
The origin of the Cricetidae and the relationships among earliest species from Central and East Asia are still disputed. The taxonomic status of some Eocene cricetid taxa is also doubtful. A parsimony analysis based on 65 cranial and dental characters and including 22 early Myomorpha was performed to elucidate these issues. As a result, the North American Elymys, known as the first Myodonta, belongs to dipodoid rodents, although it shares a suite of characters with the first cricetids. This implies that the split between dipodoids and muroids occurred in North America during the early middle Eocene, as previously supposed. The disputed Simimys and Nonomys could constitute an early dipodoid radiation. It appears that the earliest offshoot of the cricetid clade is the Asian genus Palasiomys. This taxon has a more advanced cricetid plan than contemporaneous dipodoids. The genus Raricricetodon no longer exists here because it is polyphyletic; the species are included in Palasiomys (P. minor, P. trapezius) and Pappocricetodon (P. zhongtiaensis). The genus Pappocricetodon displays a complete cricetid plan associated with both the loss of P4 and the development of an anterocone on M1. The disputed genera Eocricetodon and Oxynocricetodon characterize the beginning of the Oligocene radiations of Eucricetodontinae throughout the Holarctic continents.  相似文献   

9.
The sedges (family Cyperaceae) are an economically and ecologically important monocot group dating back at least to the Paleocene. While modern genera are mostly unknown before the Oligocene, several extinct taxa are recognized as the earliest sedges. Their affinities have been unclear until now, because they are found as isolated, often abraded fruits or endocarps. Exceptionally preserved sedge fossils from the Middle Eocene of Messel, Germany yield more characters for identification. Fossil cyperacean infructescences with in situ pollen are recognized for the first time and show features of the early-divergent mapanioid sedges. Pollen resembles that of tribe Hypolytreae. Comparisons with extant taxa suggest the closest affinities with Hypolytrum and Mapania. However, the Messel fossils represent a distinct taxon, Volkeria messelensis gen. et sp. nov. Without the additional characters of infructescence and pollen, the Messel fruits would have been placed in the extinct genus Caricoidea, a typical Eocene sedge that was widespread across Eurasia. Similarities of fruit structure suggest that Caricoidea was also a mapanioid sedge. Mapanioid sedges are found today in tropical wet forests and swamps, a distribution suggesting that early sedges occupied a similar habitat, unlike many modern sedges, and were not precursors to open grassland vegetation.  相似文献   

10.
11.
12.
The large bent-wing bat, Miniopterus schreibersii (Kuhl 1819), has a long history of taxonomic uncertainty and many populations are known to be in a state of decline. Microsatellite loci were developed for the taxonomic and population genetic assessment of the Australian complex of this species. Of the 33 primer sets designed for this research, seven (21%) were deemed suitably polymorphic for population-level analyses of the Australian taxa, with five (71%) of these loci revealing moderate to high levels of polymorphism (PIC = 0.56 to 0.91). The cross-taxa utility of the M. schreibersii microsatellite markers was assessed in the microbat (Chiroptera) family Miniopteridae. Sub-species and species covering the Miniopteridae's global distribution (with the exception of the Middle East) were selected, numbering 25 taxa in total. Amplification was successful for 26 loci, of which 20 (77%) were polymorphic. High cross-taxa utility of markers was observed with amplification achieved for all taxa for between four (20%) and 20 (100%) loci, and polymorphism was considered moderate to high (PIC = 0.47-0.91) for 12 (60%) of these loci. The high cross-taxa utility of the microsatellites reported herein reveal versatile and cost-effective molecular markers, contributing an important genetic resource for the research and conservation of Miniopteridae species worldwide.  相似文献   

13.
The prevalence of enamel hypoplasia in the deciduous teeth of great apes has the potential to reveal episodes of physiological stress in early stages of ontogenetic development. However, little is known about enamel defects of deciduous teeth in great apes. Unresolved questions addressed in this study are: Do hypoplastic enamel defects occur with equal frequency in different groups of great apes? Are enamel hypoplasias more prevalent in the deciduous teeth of male or female apes? During what phase of dental development do enamel defects tend to form? And, what part of the dental crown is most commonly affected? To answer these questions, infant and juvenile skulls of two sympatric genera of great apes (Gorilla and Pan) were examined for dental enamel hypoplasias. Specimens from the Powell‐Cotton Museum (Quex Park, UK; n = 107) are reported here, and compared with prior findings based on my examination of juvenile apes at the Cleveland Museum of Natural History (Hamman‐Todd Collection; n = 100) and Smithsonian Institution (National Museum of Natural History; n = 36). All deciduous teeth were examined by the author with a ×10 hand lens, in oblique incandescent light. Defects were classified using Fédération Dentaire International (FDI)/Defects of Dental Enamel (DDE) standards; defect size and location on the tooth crown were measured and marked on dental outline charts. Enamel defects of ape deciduous teeth are most common on the labial surface of canine teeth. While deciduous incisor and molar teeth consistently exhibit similar defects with prevalences of ~10%, canines average between 70–75%. Position of enamel defects on the canine crown was analyzed by dividing it into three zones (apical, middle, and cervical) and calculating defect prevalence by zone. Among gorillas, enamel hypoplasia prevalence increases progressively from the apical zone (low) to the middle zone to the cervical zone (highest), in both maxillary and mandibular canine teeth. Results from all three study collections reveal that among the great apes, gorillas (87–92%) and orangutans (91%) have a significantly higher prevalence of canine enamel defects than chimpanzees (22–48%). Sex differences in canine enamel hypoplasia are small and not statistically significant in any great ape. Factors influencing intergroup variation in prevalence of enamel defects and their distribution on the canine crown, including physiological stress and interspecific dento‐gnathic morphological variation, are evaluated. Am J Phys Anthropol 116:199–208, 2001. © 2001 Wiley‐Liss, Inc.  相似文献   

14.
15.
The oldest talpid, Eotalpa, was previously known only from isolated cheek teeth from the European late Middle Eocene to earliest Oligocene. Screenwashing of Late Eocene sediments of the Hampshire Basin, UK, has yielded cranial and postcranial elements: maxilla, dentary, ulna, metacarpals, distal tibia, astragalus, calcaneum, metatarsals and phalanges. In addition to M1–2 myotodonty, typical talpid features are as follows: ulna with long medially curved olecranon and deep abductor fossa and astragalar body with lateral process. However, Eotalpa retains certain soricid‐like primitive states (M1 preparacrista, P4 with prominent mesiolingual protocone lobe, strongly angled astragalar neck and calcaneum with no space for a cuboid medial process) not found in modern talpids. Eotalpa is more derived than the most primitive living talpid Uropsilus in having lost the M1–2 talon shelf, developed a convex radial facet on the ulna, an incipient proximal olecranon crest, relatively shorter metapodials and depressed manual unguals. Its astragalus with medial trochlear ridge taller than the lateral one and massive medial plantar process is typical of the Lipotyphla. Eotalpa lacks synostosis of tibia and fibula, found in other Talpidae, Soricidae and Erinaceidae, suggesting that synostosis in these groups has been independently acquired. Cladistic analysis places Eotalpa as stem member of the Talpidae and shows that much homoplasy arose during the early evolution of the family. Ground dwelling in Eotalpa is indicated by the following: astragalus with a medially dipping head, curved in a single plane; calcaneum with distal peroneal process and strongly overlapping ectal and sustentacular facets; and matching sized ectal and sustentacular facets on calcaneum and astragalus. These features would have restricted ankle mobility. Ungual and metatarsal shape and ulnar structure suggest a primitive stage in fossorial evolution and argue against a semiaquatic precursor stage in talpid fossoriality. Shrew‐moles may represent a reversal to surface foraging rather than an intermediate stage in fossoriality.  相似文献   

16.
Abstract: Early Eocene mammal faunas of North America were transformed by intercontinental dispersal at the Paleocene–Eocene boundary, but lizard faunas from the earliest Eocene of the same area were dominated by immigrants from within the continent. A new lizard assemblage from the middle early Eocene of Wyoming sheds light on the longer‐term history of dispersal in relation to climate change. The assemblage consists of three iguanid species (including two new species possibly closely related to living Anolis), Scincoideus, ‘Palaeoxantusia’, four anguids, two species of an undescribed new anguimorph clade, Provaranosaurus and a varanoid (cf. Saniwa). Most North American glyptosaurin glyptosaurines are now referred to Glyptosaurus, and Glyptosaurus hillsi is given a new diagnosis. Scincoideus is otherwise known only from the mid‐Paleocene of Belgium, and the specimens described here are the first to document intercontinental dispersal to North America among lizards in the early Eocene. Like in mammals, some immigrant lizard lineages first appearing in the Bighorn Basin in the earliest Eocene persisted in the area long after the Paleocene–Eocene thermal maximum, but other immigrants appear to have been restricted to the Paleocene–Eocene thermal maximum.  相似文献   

17.
To assess how tooth microstructure and composition might facilitate the pharyngeal mill mechanism of halfbeaks, apatite structure and iron content were determined by scanning electron microscopy and energy dispersive X‐ray analysis for Hyporhamphus regularis ardelio, Arrhamphus sclerolepis krefftii, and Hemiramphus robustus. Iron was present in developing teeth and was concentrated along the shearing edge of spatulate incisiform teeth, which dominate the occlusive wear zone in all three species. A model based on tooth structure and wear rate is proposed to explain how halfbeaks maintain a fully functional occlusion zone throughout growth and consequent tooth addition and replacement. Replacement teeth erupt and wear rapidly so that a constant occlusion plane is always present. Iron within the tooth tissue reduces the wear rate of the cutting edge while simultaneously maintaining its sharpness and efficiency. J. Morphol. 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

18.
In this investigation, deciduous teeth (canines, c; first molars, m1; second molars, m2) and their permanent successors (canines, C; first premolars, P1; second premolars, P2) were used to test two related hypotheses about fluctuating asymmetry (FA). First, based on the biology of the developing dentition, it was predicted that deciduous teeth would be more developmentally stable and thus exhibit less dimensional FA than their permanent successors. Second, based on sex differences in tooth development, it was predicted that female canines would have greater developmental stability (less FA) than male canines. Bucco-lingual measurements were made on dental casts from a single Gullah population. Using a repeated-measures study design (n = 3 repeated measures), we tested these hypotheses on sample sizes ranging from 63-82 antimeric pairs. Neither hypothesis was supported by our data. In most cases, Gullah deciduous teeth did not exhibit statistically significantly less FA than their permanent successors; indeed, statistically significant differences were found for only 3 of 12 deciduous vs. permanent contrasts, and in two cases, the deciduous tooth had greater FA. Female mandibular canines exhibited statistically significantly greater FA than those of males, while there was no statistically significant sex difference in FA for the maxillary canine. FA in these Gullah samples is high when compared to Archaic and late prehistoric Ohio Valley Native Americans, consistent with historical and archaeological evidence that environmental stress was relatively higher in the Gullah population. We suggest that when environmental stress in a population is high, the impact of differences in tooth formation time spans and developmental buffering upon FA may be minor relative to the effect of developmental noise.  相似文献   

19.
As part of the 65th Medical Brigade, U.S. Army, arthropod‐borne disease surveillance program and in collaboration with the Korea National Institute of Biological Resources (NIBR), bats were captured from caves and abandoned mines in the Republic of Korea. A total of 39 adult bat flies including five species of Nycteribiidae [Penicillidia jenynsii, Nycteribia parvula, N. formosana, N. allotopa mikado, and an unidentified species of Nycteribia (N. cf. formosana)], and one species of Streblidae, Brachytarsina kanoi, were collected from bats belonging to two families, Rhinolophidae and Vespertilionidae. This is the first report of N. allotopa mikado and N. formosana from the Republic of Korea.  相似文献   

20.
Plasticity of tooth shape in mammals is of great adaptive value for the efficient exploitation of specific feeding niches and is a crucial mechanism for ecological diversification. In this study, we aimed to infer chewing effectiveness from the functional shape of different postcanine teeth within bovids, the most diverse extant group of large herbivorous mammals. We consider the postcanine dentition as a masticatory unit and test for differences related to food biomechanical properties, dietary abrasiveness, and chewing dynamics. We compare functional properties of the postcanine tooth row among species with well‐known dietary strategies by integrating digitalization of high‐resolution occlusal surface 3D‐models of upper postcanine dentitions and quantification of the indentation index (D), a structural parameter representing enamel complexity. We test for differences in the occlusal shape among tooth positions in the postcanine dentition using robust, heteroscedastic tests in a one‐way analysis of variance. Our results show three distinct patterns of enamel complexity along the tooth row: (1) D is more homogeneously distributed among tooth positions; (2) D increases gradually in the mesiodistal axis along the tooth row; and (3) D increases abruptly only at the transition between premolars and molars. We interpreted these patterns as different adaptive configurations of the postcanine tooth row relating to diet. Grass‐ and fruit‐eating bovids show the same abrupt increase in enamel complexity at the transition from premolars to molars. Intermediate feeding and leaf‐browsing species show the same gradual, mesiodistal increase in complexity along the tooth row. The absolute physical dietary resistance (biomechanical properties plus abrasiveness) and its relation to mechanical constraints of the chewing stroke are the likely selective factors leading to convergence of enamel complexity patterns along the tooth row among taxa with different diets. J. Morphol. 275:328–341, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号