首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
G Vereb  F Erd?di  B Tóth  G Bot 《FEBS letters》1986,197(1-2):139-142
The dissociated regulatory subunit (RII) of autophosphorylated cAMP-dependent protein kinase II was dephosphorylated by the catalytic subunits of protein phosphatase-1 and -2A (phosphatase-1c and -2Ac) and by a high-Mr polycation-dependent form of phosphatase-2A (2Ao) with Km values of 5, 0.3 and 1 microM, respectively. Dissociation of protein kinase by cAMP preferentially increased the dephosphorylation of RII by phosphatase-1c, whereas polycations (histone Hl or polybrene) markedly stimulated phosphatase-2Ac and -2Ao even in the absence of cAMP. Thiophosphorylated RII inhibited the dephosphorylation of phosphorylase a by these phosphatases with half-maximum inhibitory concentrations of 0.1-0.36 microM.  相似文献   

2.
The phosphorylase phosphatases in rat and rabbit liver cytosol that are markedly stimulated by histone H1, protamine and polylysine were identified as protein phosphatases-2A0, 2A1 and 2A2 by anion-exchange chromatography, gel-filtration and immunotitration experiments. Histone H1 and protamine also stimulated the dephosphorylation of phosphorylase kinase, glycogen synthase, fructose-1,6-bisphosphatase, pyruvate kinase, acetyl-CoA carboxylase and phenylalanine hydroxylase by phosphatases-2A1 and 2A2, and with several of these substrates activation was even more striking (20-100-fold) than that observed with phosphorylase (approximately 5-fold). Activation by basic polypeptides did not involve dissociation of these phosphatases to the free catalytic subunit. The dephosphorylation of phosphorylase by protein phosphatase-1 was suppressed by basic polypeptides, protamine and polylysine being the most potent inhibitors. However, the dephosphorylation of glycogen synthase, pyruvate kinase and acetyl-CoA carboxylase were markedly stimulated by histone H1 and protamine (2-13-fold). Consequently, with the appropriate substrates, protein phosphatase-1 can also be regarded as a basic-polypeptide-activated protein phosphatase. Heparin stimulated (1.5-2-fold) the dephosphorylation of phosphorylase by phosphatases-2A0 and 2A1, provided that Mn2+ was present, but phosphatase-2A2 and the free catalytic subunit of phosphatase-2A were unaffected. Heparin, in conjunction with Mn2+, also stimulated (1.5-fold) the dephosphorylation of glycogen synthase (labelled in sites 3 abc), phosphorylase kinase and phenylalanine hydroxylase by phosphatase-2A1, but not by phosphatase-2A2. By contrast, the dephosphorylation of phosphorylase and phosphorylase kinase by protein phosphatase-1 was inhibited by heparin. However, dephosphorylation of glycogen synthase and pyruvate kinase by phosphatase-1 was stimulated by this mucopolysaccharide. The studies demonstrate that basic proteins can be used to distinguish protein phosphatase-1 from protein phosphatase-2A, but only if phosphorylase is employed as substrate. Optimal differentiation of the two phosphatases is observed at 30 micrograms/ml protamine or at heparin concentrations greater than 150 microM.  相似文献   

3.
DARPP-32, a dopamine- and cyclic AMP-regulated phosphoprotein of Mr 32 kDa, is phosphorylated on Thr34 by cyclic AMP-dependent protein kinase, resulting in its conversion to a potent inhibitor of protein phosphatase-1 (PP-1). Conversely, Thr34-phosphorylated DARPP-32 is dephosphorylated and inactivated in vitro by calcineurin and protein phosphatase-2A (PP-2A). We have investigated the relative contributions of these protein phosphatases to the regulation of DARPP-32 dephosphorylation in mouse neostriatal slices. Cyclosporin A (5 microM), a calcineurin inhibitor, maximally increased the level of phosphorylated DARPP-32 by 17+/-2-fold. Okadaic acid (1 microM), an inhibitor of PP-1 and PP-2A, had a smaller effect, increasing phospho-DARPP-32 by 5.1+/-1.3-fold. The effect of okadaic acid on DARPP-32 phosphorylation was shown to be due to inhibition of PP-2A activity. Incubation of slices in the presence of cyclosporin A plus either okadaic acid or calyculin A, another PP-1/PP-2A inhibitor, caused a synergistic increase in the level of phosphorylated DARPP-32. The use of Ca2(+)-free/EGTA medium mimicked the effects of cyclosporin A on DARPP-32 phosphorylation, supporting the conclusion that the action of cyclosporin on DARPP-32 phosphorylation was attributable to blockade of the Ca2(+)-dependent activation of calcineurin. The results indicate that calcineurin and PP-2A, but not PP-1, act synergistically to maintain a low level of phosphorylated DARPP-32 in neostriatal slices.  相似文献   

4.
Protein phosphatase-1 and protein phosphatase-2B (calcineurin) are eukaryotic serine/threonine phosphatases that share 40% sequence identity in their catalytic subunits. Despite the similarities in sequence, these phosphatases are widely divergent when it comes to inhibition by natural product toxins, such as microcystin-LR and okadaic acid. The most prominent region of non-conserved sequence between these phosphatases corresponds to the beta12-beta13 loop of protein phosphatase-1, and the L7 loop of toxin-resistant calcineurin. In the present study, mutagenesis of residues 273-277 of the beta12-beta13 loop of the protein phosphatase-1 catalytic subunit (PP-1c) to the corresponding residues in calcineurin (312-316), resulted in a chimeric mutant that showed a decrease in sensitivity to microcystin-LR, okadaic acid, and the endogenous PP-1c inhibitor protein inhibitor-2. A crystal structure of the chimeric mutant in complex with okadaic acid was determined to 2.0-A resolution. The beta12-beta13 loop region of the mutant superimposes closely with that of wild-type PP-1c bound to okadaic acid. Systematic mutation of each residue in the beta12-beta13 loop of PP-1c showed that a single amino acid change (C273L) was the most influential in mediating sensitivity of PP-1c to toxins. Taken together, these data indicate that it is an individual amino acid residue substitution and not a change in the overall beta12-beta13 loop conformation of protein phosphatase-1 that contributes to disrupting important interactions with inhibitors such as microcystin-LR and okadaic acid.  相似文献   

5.
The protein phosphatases of Drosophila melanogaster and their inhibitors   总被引:2,自引:0,他引:2  
Protein phosphatases-1, 2A and 2B have been identified in membrane and soluble fractions of Drosophila melanogaster heads. Similarities between Drosophila and mammalian protein phosphatase-1 included specificity for the beta subunit of phosphorylase kinase, sensitivity to inhibitor-1 and inhibitor-2, inhibition by protamine, retention by heparin-Sepharose and selective interaction with membranes. In addition, an inactive form of protein phosphatase-1, termed protein phosphatase-1I, was detected in the soluble fraction that could be activated by preincubation with MgATP and mammalian glycogen synthase kinase-3. Inhibitor-2 partially purified from Drosophila had an identical molecular mass to its mammalian counterpart, and recombined with mammalian protein phosphatase-1 to form a hybrid protein phosphatase-1I. Similarities between Drosophila and mammalian protein phosphatase-2A included preferential dephosphorylation of the alpha subunit of phosphorylase kinase, insensitivity to inhibitors-1 and -2, activation by protamine, exclusion from heparin-Sepharose and apparent molecular mass. A Ca2+-dependent calmodulin-stimulated protein phosphatase (protein phosphatase-2B) that was inhibited by trifluoperazine was identified in the soluble fraction. The remarkable similarities between Drosophila protein phosphatases and their mammalian counterparts are indicative of strict phylogenetic conservation and demonstrate that the procedures used to classify mammalian protein phosphatases have a wider application. Characterisation of the Drosophila phosphatases will facilitate genetic analysis of dephosphorylation systems and their possible roles in neuronal and behavioural plasticity in Drosophila.  相似文献   

6.
The glycogen-associated form of protein phosphatase-1 (PP-1G) is a heterodimer comprising a 37-kDa catalytic (C) subunit and a 161-kDa glycogen-binding (G) subunit, the latter being phosphorylated by cAMP-dependent protein kinase at two serine residues (site 1 and site 2). Here the amino acid sequence surrounding site 2 has been determined and this phosphoserine shown to lie 19 residues C-terminal to site 1 in the primary structure. The sequence in this region is: (sequence; see text) At physiological ionic strength, phosphorylation of glycogen-bound PP-1G was found to release all the phosphatase activity from glycogen. The released activity was free C subunit, and not PP-1G, while the phospho-G subunit remained bound to glycogen. Dissociation reflected a greater than or equal to 4000-fold decrease in affinity of C subunit for G subunit and was readily reversed by dephosphorylation. Phosphorylation and dephosphorylation of site 2 was rate-limiting for dissociation and reassociation of C subunit. Release of C subunit was also induced by the binding of anti-site-1 Fab fragments to glycogen-bound PP-1G. At near physiological ionic strength, PP-1G and glycogen concentration, site 2 was autodephosphorylated by PP-1G with a t0.5 of 2.6 min at 30 degrees C, approximately 100-fold slower than the t0.5 for dephosphorylation of glycogen phosphorylase under the same conditions. Site 2 was a good substrate for all three type-2 phosphatases (2A, 2B and 2C) with t0.5 values less than those toward the alpha subunit of phosphorylase kinase. At the levels present in skeletal muscle, the type-2A and type-2B phosphatases are potentially capable of dephosphorylating site 2 in vivo within seconds. Site 1 was at least 10-fold less effective than site 2 as a substrate for all four phosphatases. In conjunction with information presented in the following paper in this issue of this journal, the results substantiate the hypothesis that PP-1 activity towards the glycogen-metabolising enzymes is regulated in vivo by reversible phosphorylation of a targetting subunit (G) that directs the C subunit to glycogen--protein particles. The efficient dephosphorylation of site 2 by the Ca2+/calmodulin-stimulated protein phosphatase (2B) provides a potential mechanism for regulating PP-1 activity in response to Ca2+, and represents an example of a protein phosphatase cascade.  相似文献   

7.
The neuronal tissue-specific protein kinase C (PKC) substrate B-50 can be dephosphorylated by endogenous protein phosphatases (PPs) in synaptic plasma membranes (SPMs). The present study characterizes membrane-associated B-50 phosphatase activity by using okadaic acid (OA) and purified 32P-labeled substrates. At a low concentration of [gamma-32P]ATP, PKC-mediated [32P]phosphate incorporation into B-50 in SPMs reached a maximal value at 30 s, followed by dephosphorylation. OA, added 30 s after the initiation of phosphorylation, partially prevented the dephosphorylation of B-50 at 2 nM, a dose that inhibits PP-2A. At the higher concentration of 1 microM, a dose of OA that inhibits PP-1 as well as PP-2A, a nearly complete blockade of B-50 dephosphorylation was seen. Heat-stable PP inhibitor-2 (I-2) also inhibited dephosphorylation of B-50. The effects of OA and I-2 on B-50 phosphatase activity were additive. Endogenous PP-1- and PP-2A-like activities in SPMs were also demonstrated by their capabilities of dephosphorylating [32P]phosphorylase a and [32P]casein. With these exogenous substrates, sensitivities of the membrane-bound phosphatases to OA and I-2 were found to be similar to those of purified forms of these enzymes. These results indicate that PP-1- and PP-2A-like enzymes are the major B-50 phosphatases in SPMs.  相似文献   

8.
Inhibitor-2, purified by an improved procedure, was used to identify protein phosphatases capable of catalysing its dephosphorylation. The results showed that, under our experimental conditions, protein phosphatases-1, 2A and 2B were the only significant protein phosphatases in rabbit skeletal muscle extracts acting on this substrate. Protein phosphatases-1 and 2A accounted for all the inhibitor-2 phosphatase activity in the absence of Ca2+ (resting muscle), and the potential importance of these enzymes in vivo is discussed. Protein phosphatase-2B, a Ca2+-calmodulin-dependent enzyme, could account for up to 30% of the inhibitor-2 phosphatase activity in contracting muscle. The Km of protein phosphatase-1 for inhibitor-2 (40 nM) was 100-fold lower than the Km for phosphorylase a (4.8 microM). This finding, coupled with the failure of inhibitor-2 to inhibit its own dephosphorylation, suggests that inhibitor-2 is dephosphorylated at one of the two sites on protein phosphatase-1 involved in preventing the dephosphorylation of other substrates. The dephosphorylation of inhibitor-2 by protein phosphatase-1 was also unaffected by inhibitor-1, suggesting that the phosphorylation state of inhibitor-2 is unlikely to be controlled by cyclic AMP in vivo.  相似文献   

9.
Muscle extracts were subjected to fractionation with ethanol, chromatography on DEAE-cellulose, precipitation with (NH4)2SO4 and gel filtration on Sephadex G-200. These fractions were assayed for protein phosphatase activities by using the following seven phosphoprotein substrates: phosphorylase a, glycogen synthase b1, glycogen synthase b2, phosphorylase kinase (phosphorylated in either the alpha-subunit or the beta-subunit), histone H1 and histone H2B. Three protein phosphatases with distinctive specificities were resolved by the final gel-filtration step and were termed I, II and III. Protein phosphatase-I, apparent mol.wt. 300000, was an active histone phosphatase, but it accounted for only 10-15% of the glycogen synthase phosphatase-1 and glycogen synthase phosphatase-2 activities and 2-3% of the phosphorylase kinase phosphatase and phosphorylase phosphatase activity recovered from the Sephadex G-200 column. Protein phosphatase-II, apparent mol.wt. 170000, possessed histone phosphatase activity similar to that of protein phosphatase-I. It possessed more than 95% of the activity towards the alpha-subunit of phosphorylase kinase that was recovered from Sephadex G-200. It accounted for 10-15% of the glycogen synthase phosphatase-1 and glycogen synthase phosphatase-2 activity, but less than 5% of the activity against the beta-subunit of phosphorylase kinase and 1-2% of the phosphorylase phosphatase activity recovered from Sephadex G-200. Protein phosphatase-III was the most active histone phosphatase. It possessed 95% of the phosphorylase phosphatase and beta-phosphorylase kinase phosphatase activities, and 75% of the glycogen synthase phosphatase-1 and glycogen synthase phosphatase-2 activities recovered from Sephadex G-200. It accounted for less than 5% of the alpha-phosphorylase kinase phosphatase activity. Protein phosphatase-III was sometimes eluted from Sephadex-G-200 as a species of apparent mol.wt. 75000(termed IIIA), sometimes as a species of mol.wt. 46000(termed IIIB) and sometimes as a mixture of both components. The substrate specificities of protein phosphatases-IIA and -IIB were identical. These findings, taken with the observation that phosphorylase phosphatase, beta-phosphorylase kinase phosphatase, glycogen synthase phosphatase-1 and glycogen synthase phosphatase-2 activities co-purified up to the Sephadex G-200 step, suggest that a single protein phosphatase (protein phosphatase-III) catalyses each of the dephosphorylation reactions that inhibit glycogenolysis or stimulate glycogen synthesis. This contention is further supported by results presented in the following paper [Cohen, P., Nimmo, G.A. & Antoniw, J.F. (1977) Biochem. J. 1628 435-444] which describes a heat-stable protein that is a specific inhibitor of protein phosphatase-III.  相似文献   

10.
Neurabin is a brain-specific actin and protein phosphatase-1 (PP-1) binding protein that inhibits the purified catalytic subunit of protein phosphatase-1 (PP-1(C)). However, endogenous PP-1 exists primarily as multimeric complexes of PP-1(C) bound to various regulatory proteins that determine its activity, substrate specificity, subcellular localization and function. The major form of endogenous PP-1 in brain is protein phosphatase-1(I) (PP-1(I)), a Mg(2+)/ATP-dependent form of PP-1 that consists of PP-1(C), the inhibitor-2 regulatory subunit, an activating protein kinase and other unidentified proteins. We have identified four PP-1(I) holoenzyme fractions (PP-1(IA), PP-1(IB), PP-1(IC), and PP-1(ID)) in freshly harvested pig brain separable by poly-L-lysine chromatography. Purified recombinant neurabin (amino acid residues 1-485) inhibited PP-1(IB) (IC(50)=1.1 microM), PP-1(IC) (IC(50)=0.1 microM), and PP-1(ID) (IC(50)=0.2 microM), but activated PP-1(IA) by up to threefold (EC(50)=40 nM). The PP-1(IA) activation domain was localized to neurabin(1-210). Our results indicate a novel mechanism of PP-1 regulation by neurabin as both an inhibitor and an activator of distinct forms of PP-1(I) in brain.  相似文献   

11.
The protein phosphatase activities involved in regulating the major pathways of intermediary metabolism can be explained by only four enzymes which can be conveniently divided into two classes, type-1 and type-2. Type-1 protein phosphatases dephosphorylate the beta-subunit of phosphorylase kinase and are potently inhibited by two thermostable proteins termed inhibitor-1 and inhibitor-2, whereas type-2 protein phosphatases preferentially dephosphorylate the alpha-subunit of phosphorylase kinase and are insensitive to inhibitor-1 and inhibitor-2. The substrate specificities of the four enzymes, namely protein phosphatase-1 (type-1) and protein phosphatases 2A, 2B and 2C (type-2) have been investigated. Eight different protein kinases were used to phosphorylate 13 different substrate proteins on a minimum of 20 different serine and threonine residues. These substrates include proteins involved in the regulation of glycogen metabolism, glycolysis, fatty acid synthesis, cholesterol synthesis, protein synthesis and muscle contraction. The studies demonstrate that protein phosphatase-1 and protein phosphatase 2A have very broad substrate specificities. The major differences, apart from the site specificity for phosphorylase kinase, are the much higher myosin light chain phosphatase and ATP-citrate lyase phosphatase activities of protein phosphatase-2A. Protein phosphatase-2C (an Mg2+-dependent enzyme) also has a broad specificity, but can be distinguished from protein phosphatase-2A by its extremely low phosphorylase phosphatase and histone H1 phosphatase activities, and its slow dephosphorylation of sites (3a + 3b + 3c) on glycogen synthase relative to site-2 of glycogen synthase. It has extremely high hydroxymethylglutaryl-CoA (HMG-CoA) reductase phosphatase and HMG-CoA reductase kinase phosphatase activity. Protein phosphatase-2B (a Ca2+-calmodulin-dependent enzyme) is the most specific phosphatase and only dephosphorylated three of the substrates (the alpha-subunit of phosphorylase kinase, inhibitor-1 and myosin light chains) at a significant rate. It is specifically inhibited by the phenathiazine drug, trifluoperazine. Examination of the amino acid sequences around each phosphorylation site does not support the idea that protein phosphatase specificity is determined by the primary structure in the immediate vicinity of the phosphorylation site.  相似文献   

12.
13.
The effects of polyamines on the oligomeric forms of protein phosphatase-1 (1G), protein phosphatase-2A (2A0, 2A1 and 2A2) and their free catalytic subunits (1C and 2AC) has been studied using homogeneous enzymes isolated from rabbit skeletal muscle. Spermine increased the activity of protein phosphatase-2A towards eight of nine substrates tested. Half-maximal activation was observed at 0.2 mM with optimal effects at 1-2 mM. Above 2 mM, spermine became inhibitory. The most impressive activation of protein phosphatase-2A was obtained with glycogen synthase, especially when phosphorylated at sites-3 (8-15-fold with protein phosphatase-2A1) and phenylalanine hydroxylase (6-7-fold with protein phosphatase-2A1) as substrates. Activation of protein phosphatases 2A0, 2A1 and 2A2 was greater than that observed with 2AC. Spermine was a more potent activator than spermidine, while putrescine had only a small effect. Qualitatively similar results were obtained with five other substrates, although maximal activation was much less (1.3-3-fold with protein phosphatase-2A1). The rate of dephosphorylation of glycogen phosphorylase was decreased by spermine, inhibition being more pronounced with protein phosphatase-2AC than with 2A0, 2A1 and 2A2. Spermine (I50 = 0.1 mM with protein phosphatase-2AC) was a more potent inhibitor than spermidine (I50 = 0.9 mM) or putrescine (I50 = 8 mM). Partially purified preparations of protein phosphatases-2A0, 2A1 and 2A2 from from rat liver were affected by spermine in a similar manner to the homogeneous enzymes from rabbit skeletal muscle. Spermine did not activate protein phosphatase-1 to the same extent as protein phosphatase-2A. Greatest stimulation (2.5-fold) was again observed with glycogen synthase labelled in sites-3, with half-maximal activation at 0.2 mM and optimal effects at 1-2 mM spermine. Spermine was a much more effective stimulator than spermidine, while putrescine was ineffective. Very similar results were obtained with protein phosphatases 1G and 1C. With four other substrates maximal activation by spermine was less than 1.5-fold, while the dephosphorylation of glycogen synthase (labelled in site-2), phosphorylase kinase, pyruvate kinase and glycogen phosphorylase were inhibited. Spermine (I50 = 0.04 mM) was a more potent inhibitor of the dephosphorylation of glycogen phosphorylase than spermidine (I50 = 0.9 mM) or putrescine (I50 = 9 mM).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
The protein B-50 is dephosphorylated in rat cortical synaptic plasma membranes (SPM) by protein phosphatase type 1 and 2A (PP-1 and PP-2A)-like activities. The present studies further demonstrate that B-50 is dephosphorylated not only by a spontaneously active PP-1-like enzyme, but also by a latent form after pretreatment of SPM with 0.2 mM cobalt/20 micrograms of trypsin/ml. The activity revealed by cobalt/trypsin was inhibited by inhibitor-2 and by high concentrations (microM) of okadaic acid, identifying it as a latent form of PP-1. In the presence of inhibitor-2 to block PP-1, histone H1 (16-64 micrograms/ml) and spermine (2 mM) increased B-50 dephosphorylation. This sensitivity to polycations and the reversal of their effects on B-50 dephosphorylation by 2 nM okadaic acid are indicative of PP-2A-like activity. PP-1- and PP-2A-like activities from SPM were further displayed by using exogenous phosphorylase alpha and histone H1 as substrates. Both PP-1 and PP-2A in rat SPM were immunologically identified with monospecific antibodies against the C-termini of catalytic subunits of rabbit skeletal muscle PP-1 and PP-2A. Okadaic acid-induced alteration of B-50 phosphorylation, consistent with inhibition of protein phosphatase activity, was demonstrated in rat cortical synaptosomes after immunoprecipitation with affinity-purified anti-B-50 immunoglobulin G. These results provide further evidence that SPM-bound PP-1 and PP-2A-like enzymes that share considerable similarities with their cytosolic counterparts may act as physiologically important phosphatases for B-50.  相似文献   

15.
The microcystins and nodularins are tumour promoting hepatotoxins that are responsible for global adverse human health effects and wildlife fatalities in countries where drinking water supplies contain cyanobacteria. The toxins function by inhibiting broad specificity Ser/Thr protein phosphatases in the host cells, thereby disrupting signal transduction pathways. A previous crystal structure of a microcystin bound to the catalytic subunit of protein phosphatase-1 (PP-1c) showed distinct changes in the active site region when compared with protein phosphatase-1 structures bound to other toxins. We have elucidated the crystal structures of the cyanotoxins, motuporin (nodularin-V) and dihydromicrocystin-LA bound to human protein phosphatase-1c (gamma isoform). The atomic structures of these complexes reveal the structural basis for inhibition of protein phosphatases by these toxins. Comparisons of the structures of the cyanobacterial toxin:phosphatase complexes explain the biochemical mechanism by which microcystins but not nodularins permanently modify their protein phosphatase targets by covalent addition to an active site cysteine residue.  相似文献   

16.
The glycogen-associated form of protein phosphatase-1 (PP-1G) comprises a 37-kDa catalytic (C) subunit and a 161-kDa glycogen-binding (G) subunit. In the preceding paper in this issue of the journal we showed that the C subunit is released from PP-1G in response to phosphorylation of the G subunit by cAMP-dependent protein kinase. We now show that at 0.15-0.2 M KCl the phosphorylase phosphatase activity of glycogen-bound PP-1G is 5-8 times higher than that of released C subunit or unbound PP-1G, which are strongly inhibited at these ionic strengths. The activity of glycogen-bound PP-1G towards glycogen synthase was about 5-fold higher than that of released C subunit at 0.15M KCl. Studies with glycogen-bound substrates and myosin P-light chain (which does not interact with glycogen) indicated that PP-1G activity is only enhanced compared to free C subunit at near physiological ionic strength and when both PP-1G and substrate are glycogen-associated. The inhibition by increasing ionic strength and enhanced activity upon binding to glycogen reflected changes in K'm, but not Vmax. From the determined specificity constant, k'cat/K'm approximately 4 x 10(6) s-1 M-1, it was calculated that at physiological levels of glycogen-bound PP-1G (200 nM) and phosphorylase (70 microM), dephosphorylation of the latter could occur with a half time of 15 s, sufficient to account for inactivation rates in vivo. The much higher catalytic efficiency of glycogen-bound PP-1G toward the glycogen-metabolising enzymes at physiological ionic strength compared to free C subunit substantiates the role of PP-1G in the regulation of these substrates, and establishes a novel mechanism for selectively regulating their phosphorylation states in response to adrenalin and other factors affecting phosphorylation of the G subunit.  相似文献   

17.
Protein phosphatases present in the particulate and soluble fractions of oocytes of the starfish Asterias rubens and Marthasterias glacialis have been classified according to the criteria used for these enzymes from mammalian cells. The major protein phosphatase activity in the particulate fraction had very similar properties to protein phosphatase-1 from mammalian tissues, including preferential dephosphorylation of the beta subunit of phosphorylase kinase, sensitivity to inhibitor-1 and inhibitor-2, inhibition of phosphorylase phosphatase activity by protamine and heparin, and retention by heparin-Sepharose. The major protein phosphatase in the soluble fraction had very similar properties to mammalian protein phosphatase-2A, including preferential dephosphorylation of the alpha subunit of phosphorylase kinase, insensitivity to inhibitors-1 and 2, activation by protamine and heparin, and exclusion from heparin-Sepharose. An acid-stable and heat-stable protein was detected in the soluble fraction of starfish oocytes, whose properties were indistinguishable from those of inhibitor-2 from mammalian tissues. It inhibited protein phosphatase-1 specifically, and its apparent molecular mass on SDS polyacrylamide gels was 31 kDa. Furthermore, an inactive hybrid formed between the starfish oocyte inhibitor and the catalytic subunit of mammalian protein phosphatase-1 could be reactivated by preincubation with MgATP and mammalian glycogen synthase kinase-3. The remarkable similarities between starfish oocyte protein phosphatases and their mammalian counterparts are indicative of strict phylogenetic conservation of these enzymes. The results will facilitate further analysis of the role of protein phosphorylation in the control of starfish oocyte maturation by the hormone 1-methyladenine.  相似文献   

18.
Nuclei from bovine thymus contain a high level of partially latent protein phosphatase 1 (PP-1). More than 90% of this PP-1 is associated with the insoluble chromatin/matrix fraction and can be extracted with 0.3 M NaCl. The salt extract also contains three heat- and acid-stable inhibitory proteins of PP-1 that can be resolved on Mono Q. We have purified two of these nuclear inhibitors of PP-1 (NIPP-1a and NIPP-1b) until homogeneity. They are acidic proteins (pI = 4.4) with a molecular mass of 18 kDa (NIPP-1a) and 16 kDa (NIPP-1b) on SDS-PAGE. Judged from the larger molecular mass that was deduced from gel filtration (35 kDa), NIPP-1a and NIPP-1b appear to be asymmetric or dimeric proteins. The nuclear inhibitors totally inhibited the phosphorylase phosphatase activity of PP-1, but even at a 250-fold higher concentration they did not affect the activities of the other major serine/threonine protein phosphatases (PP-2A, PP-2B, and PP-2C). NIPP-1a and NIPP-1b inhibited the catalytic subunit of PP-1 with an extrapolated Ki of about 1 pM, which is some three orders of magnitude better than the cytoplasmic proteins inhibitor 1/DARPP-32 and modulator. The nuclear inhibitors were not inactivated by incubation with protein phosphatases that inactivate inhibitor 1 and DARPP-32. Unlike modulator, they were not able to convert the catalytic subunit of PP-1 into a MgATP-dependent form. Remarkably, the extent of inhibition of PP-1 by NIPP-1b depended on the nature of the substrate. The phosphorylase phosphatase and casein phosphatase activities of PP-1 were completely blocked by NIPP-1b, whereas the dephosphorylation of basic proteins was either not at all inhibited (histone IIA) or only partially (myelin basic protein). These data may indicate that the acidic NIPP-1b is inactivated through complexation by basic proteins. Indeed, nonphosphorylated histone IIA antagonized the inhibitory effect of NIPP-1b on the casein phosphatase activity of PP-1. Our data show that the nucleus contains specific and potent inhibitory proteins of PP-1 that differ from earlier described cytoplasmic inhibitors. We suggest that these novel proteins may control the activity of nuclear PP-1 on its natural substrate(s).  相似文献   

19.
The nature of protein phosphatases that are active against the phosphorylated proteins of glycogen metabolism was investigated in rabbit skeletal muscle and liver. Six 32P-labelled substrates corresponding to the major phosphorylation sites on glycogen phosphorylase, phosphorylase kinase, glycogen synthase and inhibitor-1 were used in these studies. The results showed that the four protein phosphatases defined in the preceding paper, namely protein phosphatases-1, 2A, 2B and 2C [Ingebritsen, T. S. and Cohen, P. (1983) Eur. J. Biochem. 132, 255-261] were the only significant enzymes acting on these substrates. The four enzymes can be conveniently separated and identified by a combination of ion-exchange chromatography and gel filtration and by the use of specific inhibitors. Three species of protein phosphatase-2A were resolved on DEAE-cellulose, termed protein phosphatases-2Ao (0.12 M NaCl), 2A1 (0.2 M NaCl) and 2A2 (0.28 M NaCl) that had apparent molecular weights of 210000, 210000 and 150000 respectively. Protein phosphatase-2Ao was a completely inactive enzyme whose activity was only expressed after dissociation to a 34000-Mr(app) catalytic subunit by freezing and thawing in 0.2 M 2-mercaptoethanol. This treatment also dissociated protein phosphatases 2A1 and 2A2 to more active 34000-Mr(app) catalytic subunits. The catalytic subunits derived from protein phosphatases-2Ao, 2A1 and 2A2 possessed identical substrate specificities, preferentially dephosphorylated the alpha-subunit of phosphorylase kinase, were unaffected by inhibitor-1 and inhibitor-2 and were inhibited by similar concentrations of ATP. The properties of protein phosphatases-2A1 and 2A2 were very similar to those of the catalytic subunits, except that they were less sensitive to inhibition by ATP. Protein phosphatase-2B was eluted from DEAE-cellulose in the same fraction as protein phosphatase-2Ao. These activities were resolved by gel filtration, the Mr(app) of protein phosphatase-2B being 98000. Protein phosphatase-2B was completely inhibited by 100 microM trifluoperazine, which did not affect the activity of protein phosphatase-2Ao or any other protein phosphatase. Freezing and thawing in 0.2 M 2-mercaptoethanol resulted in partial inactivation of protein phosphatase-2B. Protein phosphatase-2C was eluted from DEAE-cellulose at the leading edge of the peak of protein phosphatase-2A1. These activities were completely resolved by gel filtration, since the Mr(app) of protein phosphatase-2C was 46000. Two forms of protein phosphatase-1 can be identified by chromatography on DEAE-cellulose, namely protein phosphatase-1 itself and the Mg X ATP-dependent protein phosphatase. Both these species were eluted at 0.16 M NaCl just ahead of protein phosphatases-2C and 2A1. These enzymes did not interfere with measurements of type-2 protein phosphatases, since it was possible to block their activity with inhibitor-2...  相似文献   

20.
The search for potential targets for ceramide action led to the identification of ceramide-activated protein phosphatases, which include protein phosphatase-2A (PP2A) and protein phosphatase-1 (PP1) with roles in regulating apoptosis and cell growth. Thus far, in vitro studies on ceramide-activated protein phosphatases have been restricted to the use of short chain ceramides, limiting the extent of mechanistic insight. In this study, we show that the long chain D-erythro-C18-ceramide activated PP2A (AB'C trimer), PP2Ac (catalytic subunit of PP2A), and PP1gammac and -alphac (catalytic subunits of PP1gamma and -1alpha isoforms, respectively) 2-6-fold in the presence of dodecane, a lipid-solubilizing agent, with 50% maximal activation achieved at approximately 10 microM D-erythro-C18-ceramide. The diastereoisomers of D-erythroC18-ceramide, D-threo-, and L-threo-C18-ceramide, as well as the enantiomeric L-erythro-C18-ceramide, did not activate PP1 or PP2A, but they inhibited PP1 and PP2A activity. The addition of phosphatidic acid decreased the basal activity of PP1c but also increased the stimulation by D-erythro-C18-ceramide from 1.8- to 2. 8-fold and decreased the EC50 of D-erythro-C18-ceramide to 4.45 microM. The addition of 150 mM KCl decreased the basal activity of PP1 and the dose of D-erythro-C18-ceramide necessary to activate PP1c (EC50 = 6.25 microM) and increased the ceramide responsiveness up to 10-17-fold. These studies disclose stereospecific activation of PP1 and PP2A by long chain natural ceramides under near physiologic ionic strengths in vitro. The implications of these studies for mechanisms of ceramide action are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号