首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Presence of random single-strand gaps in mycobacteriophage I3 DNA   总被引:1,自引:0,他引:1  
A B Reddy  K P Gopinathan 《Gene》1986,44(2-3):227-234
The genomic double-stranded DNA of mycobacteriophage I3, when denatured with alkali, heat, formamide or dimethylsulfoxide, breaks down to heterogeneous-sized single-strand (ss) fragments smaller than the expected intact unit genome length suggesting the presence of random ss interruptions on both the strands. The occurrence of the interruptions at random is also demonstrated by two-dimensional gel electrophoresis of the restriction fragments of I3 DNA. These interruptions have no adverse effect on the phage infectivity or DNA transfectivity. Studies with nuclease BAL 31 and end-labeling analysis confirm the presence of random interruptions. Detailed analysis using T4 DNA ligase, nuclease S1 and DNA polymerase I Klenow fragment revealed that the interruptions are in the form of small gaps rather than single phosphodiester bond breaks. The average length of the gap is about 10 nucleotides long and there are 13 to 14 such gaps per DNA molecule.  相似文献   

2.
3.
K Okada 《Gene》1980,8(4):369-390
Using 13 deletion mutants of bacteriophage BF23, physical as well as genetic structures of that portion of the genome which is dispensable for phage growth were investigated. The dispensable region covers at least 15% of the genome of wild type BF23, extending from about 0.2 to 0.35 map unit. Restriction endonuclease (EcoRI and HindIII) cleavage sites and the sites of single-strand interruptions in this dispensable region were localized. It was found that the dispensable region contains an interruption site, which is missing in the mutant BF23st(0) used by Okada and Shimura (1980). Wild-type phage DNA is heterogeneous in the presence or absence of specific single-strand interruptions in this or in a neighboring region of the genome.  相似文献   

4.
The functional involvement of poly(ADP-ribose) polymerase-1 (PARP-1) in the repair of DNA single- and double-strand breaks, DNA base damage, and related repair substrate intermediates remains unclear. Using an in vitro DNA repair assay and cell extracts derived from PARP-1 deficient or wild-type murine embryonic fibroblasts, we investigated the DNA synthesis and ligation steps associated with the rejoining of DNA single-strand interruptions containing 3'-OH, and either 5'-OH or 5'-P termini. Complete repair leading to DNA rejoining was similar between PARP-1 deficient cells and wild-type controls and poly(ADP-ribose) synthesis was, as expected, greatly reduced in PARP-1 deficient cell extracts. The incorporation of [32P]dCMP into repaired DNA at the site of a lesion was reduced two-three-fold in PARP-1 deficient cell extracts, demonstrating a decrease in repair patch size. Addition of purified PARP-1 to levels approximating those present in wild-type extracts did not stimulate DNA repair synthesis. We conclude that PARP-1 is not required for the efficient processing and rejoining of single-strand interruptions with defined 3'-OH and 5'-OH or 5'-P termini. Decreased DNA repair synthesis observed in PARP-1 deficient cell extracts is associated with reduced cellular expression of several factors required for long-patch base excision repair (BER), including FEN-1 and DNA ligase I.  相似文献   

5.
The nature of nucleolytic activity regulated by genes 46 and 47 of bacteriophage T4 was studied by examining the metabolism of parental DNA of phages carrying a mutation in polynucleotide ligase gene (lig) and an additional mutation in one of the following D0 genes (D0 genes are necessary for T4 DNA synthesis): 32, 43 (DNA polymerase  pol), 44 and 45. Polynucleotide ligase and DNA polymerase were used to distinguish nicks (phosphodiester bond interruptions on duplex DNA) from gaps (interruptions with missing nucleotides). In non-permissive hosts, parental DNA of double mutants (lig, D0) accumulated both single- and double-strand breaks. Up to 30% of this DNA eventually became acid-soluble. An additional mutation in gene 46 (or 47) did not prevent accumulation of double- and single-strand breaks but did prevent degradation to the acid-soluble state. The majority of the single-strand breaks on (lig, D0)-DNA were presumed to be gaps since, after extraction from infected host cells, they were repaired by ligase plus DNA polymerase but not by ligase alone. In contrast, the majority of the single-strand breaks on parental DNA of (lig, D0, 46) or (lig, pol, 47) were repaired by ligase alone, suggesting nicks, rather than gaps. These observations suggest that (i) genes 46 and 47 regulate, either directly or indirectly, an exonuelease activity which can attack T4 DNA at nicks to create gaps, and (ii) T4 DNA polymerase, and the products of genes 32, 44 and 45 are necessary to prevent nicks from becoming gaps in vivo. Possible roles for genes 46 and 47 in T4 DNA replication and in recombination are discussed.  相似文献   

6.
7.
Double-strand DNA breaks are the most lethal type of DNA damage induced by ionizing radiations. Previously, we reported that double-strand DNA breaks can be enzymatically produced from two DNA damages located on opposite DNA strands 18 or 30 base pairs apart in a cell-free double-strand DNA break formation assay (Vispé, S., and Satoh, M. S. (2000) J. Biol. Chem. 275, 27386-27392). In the assay that we developed, these two DNA damages are converted into single-strand interruptions by enzymes involved in base excision repair. We showed that these single-strand interruptions are converted into double-strand DNA breaks; however, it was not due to spontaneous denaturation of DNA. Thus, we proposed a model in which DNA polymerase delta/epsilon, by producing repair patches at single-strand interruptions, collide, resulting in double-strand DNA break formation. We tested the model and investigated whether other enzymes/factors are involved in double-strand DNA break formation. Here we report that, instead of DNA polymerase delta/epsilon, flap endonuclease-1 (FEN-1), an enzyme involved in base excision repair, is responsible for the formation of double-strand DNA break in the assay. Furthermore, by transfecting a flap endonuclease-1 expression construct into cells, thus altering their flap endonuclease-1 content, we found an increased number of double-strand DNA breaks after gamma-ray irradiation of these cells. These results suggest that flap endonuclease-1 acts as a double-strand DNA break formation factor. Because FEN-1 is an essential enzyme that plays its roles in DNA repair and DNA replication, DSBs may be produced in cells as by-products of the activity of FEN-1.  相似文献   

8.
PM2 is a bacteriophage which has closed circular double-stranded DNA as a genome, which is the sole source for endonuclease assay for a single strand break in the fmol range. Therefore, it is important to isolate PM2 DNA with low control nicks for the endonuclease assay. Usually, the isolation method of phage DNA is to use ultracentrifugation which takes at least 4 days. In this report, a fast and effective method which takes only 2 days was developed to purify DNA using polyethylene glycol (PEG) 8000 and the yields of phage DNA isolated by these two methods were compared. The method using PEG 8000 increased the yield of PM2 DNA from 31.2% to 45.2%, and decreased the nick from 17.1% to 13.1%. Recently, the complete PM2 DNA genome sequence of 10,079 bp was published. The exact number of nucleotides of PM2 DNA is important for the correct enzyme assay which measures nicks generated by an endonuclease. The correct calculation of endonuclease activity of rpS3 for nick-circle assay was performed to measure single-strand breaks in this report. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
Short single-stranded segments of calf thymus DNA were obtained by random cleavage with DNAase I. After treatment with various concentrations of DNAase I, fragment sizes were estimated using the ratio of total to terminal phosphorus. DNA populations ranging from 4--180 bases were obtained. Fragments with lengths up to 1140 were generated by shearing in a Virtis homogenizer. The hydroxyapatite elution profiles of sized populations were determined by elution with phosphate gradients. A curve relating elution molarities to single-strand chain length was 'biphasic', with the elution molarity being extremely sensitive to chain lengths below 50 nucleotides but much less sensitive to chain lengths above 100 nucleotides. These results show that single-stranded fragments below 50 nucleotides elute from hydroxyapatite appreciably before high molecular-weight denatured DNA using phosphate gradients. This is an important consideration when using hydroxyapatite to fractionate DNA populations which contain short single strands.  相似文献   

10.
Sequence organization in Xenopus DNA studied by the electron microscope.   总被引:10,自引:0,他引:10  
Xenopus laevis DNA was extracted from red blood cells and sheared to a mean length of 2780 nucleotides. The DNA was stripped of foldback-containing fragments and incubated to C0t 10 (mol · s · l−1), allowing most repetitive sequences to form duplex structures. Duplex-containing fragments were eluted from an hydroxylapatite column and visualized for electron microscopy by spreading from 57% formamide according to the modified Kleinschmidt technique of Davis et al. (1971). The mean length of the fragments observed was 2445 nucleotides. A total of 1700 DNA strands were photographed and studied. Less than 5% of the total strand length was in uninterpretable structures. Every molecule falling within the confines of the plates was included in the sample. Over 50% of the total strand length in the sample was found in structures bearing at least one interspersed repetitive sequence duplex terminated by four single-strand regions. The fraction of DNA present in duplex regions was almost exactly that predicted if the duplex regions represent all the interspersed middle repetitive sequence in the Xenopus genome. Direct measurement of visualized duplexes shows that the mean length of interspersed repetitive sequence elements in this genome is 345 nucleotides. Duplex length was shown to be independent of the length of the strands bearing the duplexes. These observations provide direct confirmation of the length of approximately 300 nucleotides indicated for interspersed repetitive sequences by earlier physical-chemical studies 011 Xenopus DNA. In strands carrying two duplexes terminated by single-strand regions the interduplex, or single-copy sequence element length could be measured. Sequence interspersion curves generated from these data are roughly consistent with those derived earlier from measurements of hydroxylapatite binding as a function of fragment length.  相似文献   

11.
Replicative form DNA composed of a closed complementary strand and a discontinuous viral strand has been isolated from cells infected with bacteriophage φX174 during the period of single-strand DNA synthesis. This RFII DNA was degraded by the restriction enzyme from Hemophilus influenzae, endonuclease R, and the products analyzed by polyacrylamide gel electrophoresis. The results indicate that there are two types of discontinuity in the viral strands of these molecules: (1) 65% of the molecules contain a gap, which causes a discrete increase in mobility of a specific restriction enzyme fragment, R3. This gap can be selectively repaired with Escherichia coli DNA polymerase I and nucleoside triphosphates, but the molecules are not converted to RFI by addition of E. coli polynueleotide ligase to the reaction mixture. Approximately 30 moles of radioactive TTP are incorporated per mole of RF DNA. (2) 35% of the RF molecules contain a discontinuity, which does not result in a detectable change in mobility of any restriction enzyme fragment. These RF molecules can be converted to RFI by the action of ligase and polymerase I in the presence of nucleoside triphosphates, with incorporation of only approximately one mole of radioactive TTP, specifically into fragment R3, per mole of RF DNA.When the reaction of late RFII DNA and polymerase I is allowed to proceed beyond the repair of the discontinuity, radioactive nucleotides are incorporated into endonuclease R fragments adjacent to R3 in the 5′ → 3′ direction. This technique was utilized to determine a partial order of endonuclease R fragments in φX174.These results suggest that the synthesis of single-strand DNA is initiated from a unique point in cistron A and proceeds clockwise round the φX174 genetic map (cistron order: ABCDEFGH). A comparison of these results with other studies on φX174 suggests that DNA synthesis in all stages of φX174 replication may be initiated from a specific locus on the genome, at or near cistron A.  相似文献   

12.
Crossing over between homologous chromosomes is initiated in meiotic prophase in most sexually reproducing organisms by the appearance of programmed double strand breaks throughout the genome. In Saccharomyces cerevisiae the double-strand breaks are resected to form three prime single-strand tails that primarily invade complementary sequences in unbroken homologs. These invasion intermediates are converted into double Holliday junctions and then resolved into crossovers that facilitate homolog segregation during Meiosis I. Work in yeast suggests that Msh4-Msh5 stabilizes invasion intermediates and double Holliday junctions, which are resolved into crossovers in steps requiring Sgs1 helicase, Exo1, and a putative endonuclease activity encoded by the DNA mismatch repair factor Mlh1-Mlh3. We purified Mlh1-Mlh3 and showed that it is a metal-dependent and Msh2-Msh3-stimulated endonuclease that makes single-strand breaks in supercoiled DNA. These observations support a direct role for an Mlh1-Mlh3 endonuclease activity in resolving recombination intermediates and in DNA mismatch repair.  相似文献   

13.
Nucleases play important roles in nucleic acid processes, such as replication, repair and recombination. Recently, we identified a novel single-strand specific 3′-5′ exonuclease, PfuExo I, from the hyperthermophilic archaeon Pyrococcus furiosus, which may be involved in the Thermococcales-specific DNA repair system. PfuExo I forms a trimer and cleaves single-stranded DNA at every two nucleotides. Here, we report the structural basis for the cleavage mechanism of this novel exonuclease family. A structural analysis of PhoExo I, the homologous enzyme from P. horikoshii OT3, showed that PhoExo I utilizes an RNase H-like active site and possesses a 3′-OH recognition site ∼9 Å away from the active site, which enables cleavage at every two nucleotides. Analyses of the heterotrimeric and monomeric PhoExo I activities showed that trimerization is indispensable for its processive cleavage mechanism, but only one active site of the trimer is required.  相似文献   

14.
The PARP-3 protein is closely related to the PARP-1 and PARP-2 proteins, which are involved in DNA repair and genome maintenance. Here, we characterized the biochemical properties of human PARP-3. PARP-3 is able to ADP-ribosylate itself as well as histone H1, a previously unknown substrate for PARP-3. PARP-3 is not activated upon binding to DNA and is a mono-ADP-ribosylase, in contrast to PARP-1 and PARP-2. PARP-3 interacts with PARP-1 and activates PARP-1 in the absence of DNA, resulting in synthesis of polymers of ADP-ribose. The N-terminal WGR domain of PARP-3 is involved in this activation. The functional interaction between PARP-3 and PARP-1 suggests that it may have a role in DNA repair. However, here we report that PARP-3 small interfering RNA-depleted cells are not sensitive to the topoisomerase I poison camptothecin, inducing DNA single-strand breaks, and repair these lesions as efficiently as wild-type cells. Altogether, these results suggest that the interaction between PARP-1 and PARP-3 is unrelated to DNA single-strand break repair.  相似文献   

15.
An endonuclease activity has been purified approximately 800-fold from nuclei of 3T3 cells infected with polyoma virus. The purfied enzyme catalyzes an endonucleoytic cleavage of single- and double-stranded DNA and single-stranded RNA. Evidence that the activity towards these substrates resides in the same protein molecule is provided by the finding that they co-sediment in sucrose gradients and have identical rates of heat inactivation. Studies on the DNase activity shows that the rate of hydrolysis of single-stranded T7 DNA is 100-fold greater than that for double-stranded T7 DNA. Single-stranded DNA is extensively hydrolyzed to low molecular weight acid-insoluble products. With duplex DNA as substrate, only a limited number of single strand breaks are introduced. A limit digest with polyoma DNA (component I) as substrate results in the introduction of four breaks per strand. The phosphdiester bond interruptions can be repaired by polynucleotide ligase. Approximately 80% of the 5' termini present at the point of phosphodiester bond cleavage are purine nucleotides. Additional studies have demonstrated that a similar endonuclease is present in nuclei of uninfected cells and that this enzyme purified 400-fold has catalytic properties identical with those of the endonuclease from infected cells.  相似文献   

16.
17.
A ubiquitous family of repeated DNA sequences in the human genome   总被引:88,自引:0,他引:88  
Renatured DNA from human and many other eukaryotes is known to contain 300-nucleotide duplex regions formed from renatured repeated sequences. These short repeated DNA sequences are widely believed to be interspersed with single copy DNA sequences. In this work we show that at least half of these 300-nucleotide duplexes share a cleavage site for the restriction enzyme AluI. This site is located 170 nucleotides from one end. This Alu family of repeated sequences makes up at least 3% of the genome and is present in several hundred thousand copies.Inverted repeated sequences are also known to contain a short 300-nucleotide duplex region. We find that at least half of the 300-nucleotide duplex regions in inverted repeated sequences also have an AluI restriction site located 170 nucleotides from one end.By driven renaturation techniques, the Alu family is shown to be distributed over a minimum range of 30% to 60% of the genome. (The breadth of this range reflects the presence of inverted repeated sequences which, in part, include the Alu family.) These findings imply that the interspersion pattern of repeated and single copy sequences in human DNA is largely dominated by one family of repeated sequences.  相似文献   

18.
DNA topoisomerase I is a nuclear enzyme which catalyzes the conversion of the DNA topology by introducing single-strand breaks into the DNA molecule. This enzyme represents a novel and distinct molecule target for cancer therapy by antitopoisomerase drugs belonging to the campthotecin series of antineoplastics. As many tumors can acquire resistance to drug treatment and become refractary to the chemotherapy it is very important to investigate the mechanisms involved in such a drug resistance for circumventing the phenomenon. This article describes the role of topoisomerase I in cell functions and the methods used to assess its in vitro catalytic activity. It reviews the mechanisms of cytotoxicity of the most specific antitopoisomerase I drugs by considering also the phenomenon of drug resistance. Some factors useful to drive the future perspectives in the development of new topoisomerase I inhibitors are also evidenced and discussed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
DNA end-labeling procedures were used to analyze both the frequency and distribution of DNA strand breaks in mammalian cells exposed or not to different types of DNA-damaging agents. The 3' ends were labeled by T4 DNA polymerase-catalyzed nucleotide exchange carried out in the absence or presence of Escherichia coli endonuclease IV to cleave abasic sites and remove 3' blocking groups. Using this sensitive assay, we show that DNA isolated from human cells or mouse tissues contains variable basal levels of DNA strand interruptions which are associated with normal bioprocesses, including DNA replication and repair. On the other hand, distinct dose-dependent patterns of DNA damage were assessed quantitatively in cultured human cells exposed briefly to menadione, methylmethane sulfonate, topoisomerase II inhibitors, or gamma rays. In vivo induction of single-strand breaks and abasic sites by methylmethane sulfonate was also measured in several mouse tissues. The genomic distribution of these lesions was investigated by DNA cleavage with the single-strand-specific S1 nuclease. Strikingly similar cleavage patterns were obtained with all DNA-damaging agents tested, indicating that the majority of S1-hypersensitive sites detected were not randomly distributed over the genome but apparently were clustered in damage-sensitive regions. The parallel disappearance of 3' ends and loss of S1-hypersensitive sites during post-gamma-irradiation repair periods indicates that these sites were rapidly repaired single-strand breaks or gaps (2- to 3-min half-life). Comparison of S1 cleavage patterns obtained with gamma-irradiated DNA and gamma-irradiated cells shows that chromatin structure was the primary determinant of the distribution of the DNA damage detected.  相似文献   

20.
DNA deoxyribophosphodiesterase.   总被引:17,自引:0,他引:17       下载免费PDF全文
A previously unrecognized enzyme acting on damaged termini in DNA is present in Escherichia coli. The enzyme catalyses the hydrolytic release of 2-deoxyribose-5-phosphate from single-strand interruptions in DNA with a base-free residue on the 5' side. The partly purified protein appears to be free from endonuclease activity for apurinic/apyrimidinic sites, exonuclease activity and DNA 5'-phosphatase activity. The enzyme has a mol. wt of approximately 50,000-55,000 and has been termed DNA deoxyribophosphodiesterase (dRpase). The protein presumably is active in DNA excision repair to remove a sugar-phosphate residue from an endonucleolytically incised apurinic/apyrimidinic site, prior to gap filling and ligation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号