首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The inositol 1,4,5-trisphosphate (IP3)-induced Ca2+ release was studied using streptolysin O-permeabilized bovine adrenal chromaffin cells. The IP3-induced Ca2+ release was followed by Ca2+ reuptake into intracellular compartments. The IP3-induced Ca2+ release diminished after sequential applications of the same amount of IP3. Addition of 20 microM GTP fully restored the sensitivity to IP3. Guanosine 5'-O-(3-thio)triphosphate (GTP gamma S) could not replace GTP but prevented the action of GTP. The effects of GTP and GTP gamma S were reversible. Neither GTP nor GTP gamma S induced release of Ca2+ in the absence of IP3. The amount of Ca2+ whose release was induced by IP3 depended on the free Ca2+ concentration of the medium. At 0.3 microM free Ca2+, a half-maximal Ca2+ no Ca2+ release was observed with 0.1 microM IP3; at this Ca2+ concentration, higher concentrations of IP3 (0.25 microM) were required to evoke Ca2+ release. At 8 microM free Ca2+, even 0.25 microM IP3 failed to induce release of Ca2+ from the store. The IP3-induced Ca2+ release at constant low (0.2 microM) free Ca2+ concentrations correlated directly with the amount of stored Ca2+. depending on the filling state of the intracellular compartment, 1 mol of IP3 induced release of between 5 and 30 mol of Ca2+.  相似文献   

2.
The effect of the antidepressant mirtazapine on cytosolic free Ca2+ concentration ([Ca2+]i) and viability has not been explored in any cell type. This study examined whether mirtazapine alters Ca2+ levels and causes cell death in osteoblast-like cells using MG63 human osteosarcoma cells as a model. [Ca2+]i and cell viability were measured using the fluorescent dyes fura-2 and WST-1, respectively. Mirtazapine at concentrations above 250 microM increased [Ca2+]i in a concentration-dependent manner. The Ca2+ signal was reduced by 60% by removing extracellular Ca2+. The mirtazapine-induced Ca2+ influx was sensitive to blockade of nifedipine and verapamil. In Ca(2+)-free medium, after pretreatment with 1.5 mM mirtazapine, 1 microM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor), 2 microM CCCP (a mitochondrial uncoupler), and 1 microM ionomycin failed to release more stored Ca2+; conversely, pretreatment with thapsigargin, CCCP and ionomycin abolished mirtazapine-induced Ca2+ release. Inhibition of phospholipase C with 2 microM U73122 did not change mirtazapine-induced [Ca2+]i, increase. Seal of Ca2+ movement across the plasma membrane with 50 microM extracellular La3+ enhanced 1 microM thapsigargin-induced [Ca2+]i increase, suggesting that Ca2+ efflux played a role in lowering thapsigargin-induced [Ca2+]i increase; however, the same La3+ treatment did not alter mirtazapine-induced [Ca2+]i increase. At concentrations of 500 microM and 1000 microM, mirtazapine killed 30% and 60% cells, respectively. The cytotoxicity was not reversed by chelating cytosolic Ca2+ with BAPTA. Collectively, in MG63 cells, mirtazapine induced a [Ca2+]i increase by causing Ca2+ release from stores and Ca2+ influx from extracellular space. Furthermore, mirtazapine caused cytotoxicity at higher concentrations in a Ca(2+)-dissociated manner.  相似文献   

3.
The effects of Ca2+ and GTP on the release of Ca2+ from the inositol 1,4,5-trisphosphate (IP3) sensitive Ca2+ compartment were investigated with digitonin permeabilized rat pancreatic acinar cells. The amount of Ca2+ released due to IP3 directly correlated with the amount of stored Ca2+ and was found to be inversely proportional to the medium free Ca2+ concentration. Ca2+ release induced by 0.18 microM IP3 was half maximally inhibited at 0.5 microM free Ca2+, i.e. at concentrations observed in the cytosol of pancreatic acinar cells. GTP did not cause Ca2+ release on its own, but a single addition of GTP (20 microM) abolished the apparent desensitization of the Ca2+ release which was observed during repeated IP3 applications. This effect of GTP was reversible. GTP gamma S could not replace GTP. Desensitization still occurred when GTP gamma S was added prior to GTP. The reported data indicate that GTP, stored Ca2+ and cytosolic free Ca2+ modulate the IP3 induced Ca2+ release.  相似文献   

4.
We have used GH3 cells permeabilized by electric field discharge to examine the effects of Ca2+ and protein kinase C activators (phorbol ester and diacylglycerol) on prolactin (PRL) release. Ca2+ was found to stimulate PRL release approximately 4 fold at 3 microM Ca2+ with a half-maximal response at approximately .5 microM estimated free Ca2+. 12-O-tetradecanoyl phorbol-13-acetate and 1-oleoyl-2-acetyl-sn-glycerol stimulated PRL release throughout a range of Ca2+ concentrations (1 nM -3 microM), but stimulation was greater at higher Ca2+ concentrations (.1 microM to 1 microM). Both agents decreased by 1.8 fold the apparent [Ca2+] at which half-maximal stimulation of secretion occurred. Quin 2 was used to measure the free [Ca2+] of intact and permeable cells; PRL secretion at a free [Ca2+] corresponding to resting cytoplasmic [Ca2+] was 10% of maximal, while secretion at the [Ca2+] corresponding to the Ca2+ spike induced by thyrotropin-releasing hormone was approximately 25% of maximal.  相似文献   

5.
The effect of miconazole, an anti-fungal drug, on cytoplasmic free Ca2+ concentrations ([Ca2+]i) in human osteosarcoma cells (MG63) was explored by using the Ca2+-sensitive dye fura-2. Miconazole acted in a concentration-dependent manner with an EC50 of 75 microM. The Ca2+ signal comprised a gradual rise and a sustained elevation. Removal of extracellular Ca2+ reduced 50% of the signal. In Ca2+-free medium, the [Ca2+]i rise induced by 1 microM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor) was completely inhibited by pretreatment with 20 microM miconazole. Pretreatment with thapsigargin partly inhibited miconazole-induced Ca2+ release. The miconazole-induced Ca2+ release was not changed by inhibition of phospholipase C with 2 microM U73122. By using tetrazolium as a fluorescent probe, it was shown that 10-100 microM miconazole decreased cell proliferation rate in a concentration-dependent manner. Collectively, this study shows that miconazole induces [Ca2+]i rises in human osteosarcoma cells via releasing Ca2+ mainly from the endoplasmic reticulum in a manner independent of phospholipase C activity, and by causing Ca2+ influx. Furthermore, miconazole may be cytotoxic to the cells at higher concentrations.  相似文献   

6.
The role of acidic intracellular calcium stores in calcium homeostasis was investigated in the Drosophila Schneider cell line 2 (S2) by means of free cytosolic calcium ([Ca2+]i) and intracellular pH (pHi) imaging together with measurements of total calcium concentrations within intracellular compartments. Both a weak base (NH4Cl, 15 mM) and a Na+/H+ ionophore (monensin, 10 microM) evoked cytosolic alkalinization followed by Ca2+ release from acidic intracellular Ca2+ stores. Pretreatment of S2 cells with either thapsigargin (1 microM), an inhibitor of endoplasmic reticulum Ca(2+)-ATPases, or with the Ca2+ ionophore ionomycin (10 microM) was without effect on the amplitude of Ca2+ release evoked by alkalinization. Application of the cholinergic agonist carbamylcholine (100 microM) to transfected S2-DM1 cells expressing a Drosophila muscarinic acetylcholine receptor (DM1) emptied the InsP3-sensitive Ca2+ store but failed to affect the amplitude of alkalinization-evoked Ca2+ release. Glycyl-L-phenylalanine-beta-naphthylamide (200 microM), a weak hydrophobic base known to permeabilize lysosomes by osmotic swelling, triggered Ca2+ release from internal stores, while application of brefeldin A (10 microM), an antibiotic which disperses the Golgi complex, resulted in a smaller increase in [Ca2+]i. These results suggest that the alkali-evoked calcium release is largely attributable to lysosomes, a conclusion that was confirmed by direct measurements of total calcium content of S2 organelles. Lysosomes and endoplasmic reticulum were the only organelles found to have concentrations of total calcium significantly higher than the cytosol. However, NH4Cl (15 mM) reduced the level of total calcium only in lysosomes. Depletion of acidic Ca2+ stores did not elicit depletion-operated Ca2+ entry. They were refilled upon re-exposure of cells to normal saline ([Ca2+]o = 2 mM), but not by thapsigargin-induced [Ca2+]i elevation in Ca(2+)-free saline.  相似文献   

7.
Calmodulin inhibits inositol 1,4,5-trisphosphate (IP3) binding to the IP3 receptor in both a Ca2+-dependent and a Ca2+-independent way. Because there are no functional data on the modulation of the IP3-induced Ca2+ release by calmodulin at various Ca2+ concentrations, we have studied how cytosolic Ca2+ and Sr2+ interfere with the effects of calmodulin on the IP3-induced Ca2+ release in permeabilized A7r5 cells. We now report that calmodulin inhibited Ca2+ release through the IP3 receptor with an IC50 of 4.6 microM if the cytosolic Ca2+ concentration was 0.3 microM or higher. This inhibition was particularly pronounced at low IP3 concentrations. In contrast, calmodulin did not affect IP3-induced Ca2+ release if the cytosolic Ca2+ concentration was below 0.3 microM. Calmodulin also inhibited Ca2+ release through the IP3 receptor in the presence of at least 10 microM Sr2+. We conclude that cytosolic Ca2+ or Sr2+ are absolutely required for the calmodulin-induced inhibition of the IP3-induced Ca2+ release and that this dependence represents the formation of the Ca2+/calmodulin or Sr2+/calmodulin complex.  相似文献   

8.
The effect of fendiline, an anti-anginal drug, on cytosolic free Ca2+ levels ([Ca2+]i) in A10 smooth muscle cells was explored by using fura-2 as a Ca2+ indicator. Fendiline at concentrations between 10-50 microM increased [Ca2+]i in a concentration-dependent manner with an EC50 of 20 microM. External Ca2+ removal reduced the Ca2+ signal by 75%. Addition of 3 mM Ca2+ increased [Ca2+]i in cells pretreated with fendiline in Ca2+-free medium. The 50 microM fendiline-induced [Ca2+]i increase in Ca2+-containing medium was inhibited by 10 microM of La3+, nifedipine, or verapamil. In Ca2+-free medium, pretreatment with 1 microM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor) to deplete the endoplasmic reticulum Ca2+ store partly inhibited 50 microM fendiline-induced Ca2+ release; whereas pretreatment with 50 microM fendiline abolished 1 microM thapsigargin-induced Ca2+ release. Inhibition of phospholipase C activity with 2 microM U73122 did not alter 50 microM fendiline-induced Ca2+ release. Incubation with 50 microM fendiline for 10-30 min decreased cell viability by 10-20%. Together, the findings indicate that in smooth muscle cells fendiline induced [Ca2+]i increases. Fendiline acted by activating Ca2+ influx via L-type Ca2+ channels, and by releasing internal Ca2+ in a phospholipase C-independent manner. Prolonged exposure of cells to fendiline induced cell death.  相似文献   

9.
The effect of the carcinogen safrole on intracellular Ca2+ movement in renal tubular cells has not been explored previously. The present study examined whether safrole could alter Ca2+ handling in Madin-Darby canine kidney (MDCK) cells. Cytosolic free Ca2+ levels ([Ca2+]i) in populations of cells were measured using fura-2 as a fluorescent Ca2+ probe. Safrole at concentrations above 33 microM increased [Ca2+]i in a concentration-dependent manner with an EC50 value of 400 microM. The Ca2+ signal was reduced by 90% by removing extracellular Ca2+, but was not affected by nifedipine, verapamil, or diltiazem. Addition of Ca2+ after safrole had depleted intracellular Ca(2+)-induced dramatic Ca2+ influx, suggesting that safrole caused store-operated Ca2+ entry. In Ca(2+)-free medium, after pretreatment with 650 microM safrole, 1 microM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor) failed to release more Ca 2+. Inhibition of phospholipase C with 2 microM U73122 did not affect safrole-induced Ca2+ release. Trypan blue exclusion assays revealed that incubation with 650 microM safrole for 30 min did not kill cells, but killed 70% of cells after incubation for 60 min. Collectively, the data suggest that in MDCK cells, safrole induced a [Ca2+] increase by causing Ca2+ release from the endoplasmic reticulum in a phospholipase C-independent fashion, and by inducing Ca2+ influx via store-operated Ca2+ entry. Furthermore, safrole can cause acute toxicity to MDCK cells.  相似文献   

10.
The effect of ketoconazole on cytosolic free Ca2+ concentrations ([Ca2+]i) and proliferation has not been explored in corneal cells. This study examined whether ketoconazole alters Ca2+ levels and causes cell death in SIRC rabbit corneal epithelial cells. [Ca2+]i and cell viability were measured by using the fluorescent dyes fura-2 and WST-1, respectively. Ketoconazole at concentrations of 5 microM and above increased [Ca2+]i in a concentration-dependent manner. The Ca2+ signal was reduced partly by removing extracellular Ca2+. The ketoconazole-induced Ca2+ influx was insensitive to L-type Ca2+ channel blockers and protein kinase C modulators. In Ca2+-free medium, after pretreatment with 50 microM ketoconazole, thapsigargin-(1 microM)-induced [Ca2+]i rises were abolished; conversely, thapsigargin pretreatment nearly abolished ketoconazole-induced [Ca2+]i rises. Inhibition of phospholipase C with 2 microM U73122 did not change ketoconazole-induced [Ca2+]i rises. At concentrations between 5 and 100 microM, ketoconazole killed cells in a concentration-dependent manner. The cytotoxic effect of 50 microM ketoconazole was not reversed by prechelating cytosolic Ca2+ with BAPTA. In summary, in corneal cells, ketoconazole-induced [Ca2+]i rises by causing Ca2+ release from the endoplasmic reticulum and Ca2+ influx from unknown pathways. Furthermore, the cytotoxicity induced by ketoconazole was not caused via a preceding [Ca2+]i rise.  相似文献   

11.
The effect of NPC-14686, a potential anti-inflammatory drug, on cytosolic free Ca2+ levels ([Ca2+]i) and growth in PC3 human prostate cancer cells was examined by using fura-2 as a fluorescent Ca2+ indicator and WST-1 as a fluorescent growth dye. NPC-14686 at concentrations above 10 microM increased [Ca2+]i in a concentration-dependent manner with an EC50 value of 100 microM. NPC-14686-induced Ca2+ influx was confirmed by Mn2+ quench of fura-2 fluorescence. The Ca2+ signal was also reduced by removing extracellular Ca2+. Pretreatment with 1 microM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor) to deplete the endoplasmic reticulum Ca2+ nearly abolished 200 microM NPC-14686-induced Ca2+ release; and conversely pretreatment with NPC-14686 completely inhibited thapsigargin-induced Ca2+ release. The Ca2+ release induced by 200 microM NPC-14686 was not affected by inhibiting phospholipase C with 2 microM U73122. Overnight treatment with 1-500 microM NPC-14686 decreased cell viability in a concentration-dependent manner. These findings suggest that in human PC3 prostate cancer cells, NPC-14686 increases [Ca2+]i by evoking extracellular Ca2+ influx and releasing intracellular Ca2+ from the endoplasmic reticulum via a phospholiase C-independent manner. NPC-14686 may be cytotoxic to prostate cancer cells.  相似文献   

12.
Hormonal and phorbol ester pretreatment of pancreatic acinar cells markedly decreases the Ins(1,4,5)P3-induced release of actively stored Ca2+ [Willems, Van Den Broek, Van Os & De Pont (1989) J. Biol. Chem. 264, 9762-9767]. Inhibition occurred at an ambient free Ca2+ concentration of 0.1 microM, suggesting a receptor-mediated increase in Ca2(+)-sensitivity of the Ins(1,4,5)P3-operated Ca2+ channel. To test this hypothesis, the Ca2(+)-dependence of Ins(1,4,5)P3-induced Ca2+ release was investigated. In the presence of 0.2 microM free Ca2+, permeabilized cells accumulated 0.9 nmol of Ca2+/mg of acinar protein in an energy-dependent pool. Uptake into this pool increased 2.2- and 3.3-fold with 1.0 and 2.0 microM free Ca2+ respectively. At 0.2, 1.0 and 2.0 microM free Ca2+, Ins(1,4,5)P3 maximally released 0.53 (56%), 0.90 (44%) and 0.62 (20%) nmol of Ca2+/mg of acinar protein respectively. Corresponding half-maximal stimulatory Ins(1,4,5)P3 concentrations were calculated to be 0.5, 0.6 and 1.4 microM, suggesting that the affinity of Ins(1,4,5)P3 for its receptor decreases beyond 1.0 microM free Ca2+. The possibility that an inhibitory effect of sub-micromolar Ca2+ is being masked by the concomitant increase in size of the releasable store is excluded, since Ca2+ release from cells loaded in the presence of 0.1 or 0.2 microM free Ca2+ and stimulated at higher ambient free Ca2+ was not inhibited below 1.0 microM free Ca2+. At 2.0 and 10.0 microM free Ca2+, Ca2+, Ca2+ release was inhibited by approx. 30% and 75% respectively. The results presented show that hormonal pretreatment does not lead to an increase in Ca2(+)-sensitivity of the release mechanism. Such an increase in Ca2(+)-sensitivity to sub-micromolar Ca2+ is required to explain sub-micromolar oscillatory changes in cytosolic free Ca2+ by a Ca2(+)-dependent negative-feedback mechanism.  相似文献   

13.
The effect of the carcinogen safrole on intracellular Ca2+ mobilization and on viability of human PC3 prostate cancer cells was examined. Cytosolic free Ca2+ levels ([Ca2+]i) were measured by using fura-2 as a probe. Safrole at concentrations above 10 microM increased [Ca2+]i in a concentration-dependent manner with an EC50 value of 350 microM. The Ca2+ signal was reduced by more than half after removing extracellular Ca2+ but was unaffected by nifedipine, nicardipine, nimodipine, diltiazem, or verapamil. In Ca2+-free medium, after treatment with 650 microM safrole, 1 microM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor) failed to release Ca2+. Neither inhibition of phospholipase C with U73122 nor modulation of protein kinase C activity affected safrole-induced Ca2+ release. Overnight incubation with 0.65-65 microM safrole did not affect cell viability, but incubation with 325-625 microM safrole decreased viability. Collectively, the data suggest that in PC3 cells, safrole induced a [Ca2+]i increase by causing Ca2+ release from the endoplasmic reticulum in a phospholipase C- and protein kinase C-independent fashion, and by inducing Ca2+ influx. Safrole can decrease cell viability in a concentration-dependent manner.  相似文献   

14.
The effect of the guanine nucleotide GTP on Ca2+ release from the endoplasmic reticulum of digitonin-permeabilized islets was investigated. maximal and half-maximal Ca2+ release were observed at 5 microM- and 2.5 microM-GTP respectively. GTP caused a rapid release of Ca2+ from the endoplasmic reticulum, which was complete within 1 min. GTP-induced Ca2+ release was structurally specific and required the hydrolysis of GTP. The combination of maximal concentrations of GTP (10 microM) and myo-inositol 1,4,5-trisphosphate (IP3) (10 microM) resulted in an additive effect on Ca2+ release from the endoplasmic reticulum. GDP (100 microM), which inhibits GTP-induced Ca2+ release, did not affect IP3-induced Ca2+ release. Furthermore, GTP-induced Ca2+ release was not independent on submicromolar free Ca2+ concentrations, unlike IP3-induced Ca2+ release. These observations suggest that mechanistically GTP-induced Ca2+ release is different from IP3-induced Ca2+ release from the endoplasmic reticulum.  相似文献   

15.
Prolactin (PRL) release in permeable GH3 pituitary cells was stimulated by the protein kinase C activators 12-O-tetradecanoylphorbol 13-acetate (TPA) and 1-oleoyl-2-acetyl-sn-glycerol (OAG). Both agents stimulated secretion at 10 nM Ca2+, but higher [Ca2+] (greater than 0.1 microM) potentiated TPA and OAG action. Maximal potentiation occurred at 1 microM calculated free Ca2+, and a similar value was obtained when the cytoplasmic [Ca2+] was measured with the Ca2+-sensitive dye Quin 2. Release of a secretory sulfated proteoglycan was also stimulated by TPA and OAG in permeable GH3 cells, with characteristics similar to those for PRL release. Trifluoroperazine, polymyxin B, neomycin, and 8-(diethylamino)octyl-3,4,5-trimethoxybenzoate all inhibited both TPA- and Ca2+-stimulated PRL release, but in each case the half-maximal inhibitory concentrations were approximately 2-fold higher for TPA-stimulated release compared to Ca2+-stimulated release. Thyrotropin-releasing hormone (TRH) and guanosine 5'-Q-thiotriphosphate, which stimulate polyphosphoinositide breakdown in permeable cells, were found to be only weak stimulators of PRL release, compared to TPA and exogenous diacylglycerol. However, a much stronger effect of TRH was seen if cells were briefly treated with TRH prior to permeabilization. PRL release from TRH-pretreated permeable cells resembled TPA- and OAG-stimulated secretion, with [Ca2+] greater than 0.1 microM potentiating the effect of TRH pretreatment. These studies support the hypothesis that PRL release in GH3 cells can be stimulated directly by a diacylglycerol-activated secretory mechanism whose activity is modulated by [Ca2+].  相似文献   

16.
The relationship between catecholamine secretion and arachidonic acid release from digitonin-treated chromaffin cells was investigated. Digitonin renders permeable the plasma membranes of bovine adrenal chromaffin cells to Ca2+, ATP, and proteins. Digitonin-treated cells undergo exocytosis of catecholamine in response to micromolar Ca2+ in the medium. The addition of micromolar Ca2+ to digitonin-treated chromaffin cells that had been prelabeled with [3H]arachidonic acid caused a marked increase in the release of [3H]arachidonic acid. The time course of [3H]arachidonic acid release paralleled catecholamine secretion. Although [3H]arachidonic acid release and exocytosis were both activated by free Ca2+ in the micromolar range, the activation of [3H]arachidonic acid release occurred at Ca2+ concentrations slightly lower than those required to activate exocytosis. Pretreatment of the chromaffin cells with N-ethylmaleimide (NEM) or p-bromophenacyl bromide (BPB) resulted in dose-dependent inhibition of 10 microM Ca2+-stimulated [3H]arachidonic acid release and exocytosis. The IC50 of NEM for both [3H]arachidonic acid release and exocytosis was 40 microM. The IC50 of BPB for both events was 25 microM. High concentrations (5-20 mM) of Mg2+ caused inhibition of catecholamine secretion without altering [3H]arachidonic acid release. A phorbol ester that activates protein kinase C, 12-O-tetradecanoylphorbol-13-acetate (TPA), caused enhancement of both [3H]arachidonic acid release and exocytosis. The findings demonstrate that [3H]arachidonic acid release is stimulated during catecholamine secretion from digitonin-treated chromaffin cells and they are consistent with a role for phospholipase A2 in exocytosis from chromaffin cells. Furthermore the data suggest that protein kinase C can modulate both arachidonic acid release and exocytosis.  相似文献   

17.
Acetylcholine (ACh) increased cyclic AMP levels in cultured bovine chromaffin cells with a peak effect at 1 min after the addition. Pretreatment with forskolin (0.3 microM) enhanced the ACh-evoked cyclic AMP increase. The catecholamine (CA) release induced by ACh was enhanced by forskolin, but forskolin alone did not enhance the CA release. The effect of forskolin increased dose-dependently up to 1 microM, but decreased at higher concentrations. Dibutyryl cyclic AMP (DBcAMP) also enhanced ACh-evoked CA release, but the effect was less potent than that of forskolin. Forskolin enhanced both [3H]norepinephrine ([3H]NE) and endogenous CA release evoked by 30 mM K+ from cells that were preloaded with [3H]NE. The effects of forskolin were substantial when CA release was evoked with low concentrations of ACh or excess K+, but decreased with higher concentrations of the stimulants. Forskolin also enhanced the CA release induced by ionomycin and veratrine, or by caffeine in Ca2+-free medium. The potentiation by forskolin of the ACh-evoked CA release was manifest in low Ca2+ concentrations in the medium, but decreased when Ca2+ concentration was increased. These results suggest that cyclic AMP may play a role in the modulation of CA release from chromaffin cells.  相似文献   

18.
Inositol-polyphosphate-induced Ca2+ mobilization was investigated in saponin-permeabilized SH-SY5Y human neuroblastoma cells. Ins(1,4,5)P3 induced a dose-related release from intracellular Ca2+ stores with an EC50 (concn. giving half-maximal effect) of 0.1 microM and a maximal release of 70%. Ins(1,3,4)P3, DL-Ins(1,4,5,6)P4 and Ins(1,3,4,5,6)P5 did not evoke Ca2+ mobilization in these cells when used at concentrations up to 10 microM. However, Ins(1,3,4,5)P4 was found to release Ca2+ in a dose-related manner, but the response was dependent on the source of Ins(1,3,4,5)P4 used. When commercially available D-Ins(1,3,4,5)P4 was used, the EC50 and maximal response values were 1 microM and 50% respectively, compared with values for chemically synthesized DL-Ins(1,3,4,5)P4 of 2 microM and 25%. The enhanced maximal response of commercial D-Ins(1,3,4,5)P4 was decreased by pretreatment with rat brain crude Ins(1,4,5)P3 3-kinase and was therefore concluded to be indicative of initial Ins(1,4,5)P3 contamination of the Ins(1,3,4,5)P4 preparation. When metabolism of DL-Ins(1,3,4,5)P4 (10 microM) in these cells at 25 degrees C was investigated by h.p.l.c., substantial amounts of Ins(1,4,5)P3 (0.2 microM) and Ins(1,3,4)P3 (0.8 microM) were found to be produced within 3 min. Analysis of DL-Ins(1,3,4,5)P4 incubation with cells at 4 degrees C, however, indicated that metabolism had been arrested ([3H]Ins(1,4,5)P3 detection limits were estimated to be approx. 0.01 microM). When chemically synthesized DL-Ins(1,3,4,5)P4 and incubation conditions of low temperature were used, the Ca2(+)-releasing properties of this compound were established to be 1 microM and 19% for the EC50 and maximal response values respectively. The results obtained strongly suggest that Ins(1,3,4,5)P4 alone has the ability to release intracellular Ca2+. However, in the presence of sub-maximal concentrations of Ins(1,4,5)P3, Ca2+ release appears to be synergistic with Ins(1,3,4,5)P4, but at supramaximal concentrations not even additive effects are observed.  相似文献   

19.
This study explored whether sulforaphane changed basal [Ca2+]i levels in suspended Madin-Darby canine kidney (MDCK) cells by using fura-2 as a Ca(2+)-sensitive fluorescent dye. Sulforaphane at concentrations between 2.5-10 microM increased [Ca2+]i in a concentration-dependent manner. This Ca2+ influx was inhibited by phospholipase A2 inhibitor aristolochic acid but not by Ca2+ channel blockers such as nifedipine, nimodipine, nicardipine, diltiazem, verapamil, econazole and SK&F96365. The Ca2+ signal was abolished by removing extracellular Ca2+. In Ca(2+)-free medium, pretreatment with sulforaphane did not alter the endoplasmic reticulum Ca2+ pump inhibitor thapsigargin-induced Ca2+ release suggesting sulforaphane did not induce slow Ca2+ release from endoplasmic reticulum. At concentrations between 1 and 20 microM, sulforaphane induced concentration-dependent decrease in cell viability which was not affected by pre-chelation of cytosolic Ca2+ with BAPTA/AM. Flow cytometry data suggest that 20 (but not 5 and 10) microM sulforaphane induced significant increase in sub G1 phase indicating involvement of apoptosis. Collectively, in MDCK cells, sulforaphane induced [Ca2+]i rises by causing Ca2+ entry through phospholipase A2-sensitive pathways without inducing Ca2+ release from the endoplasmic reticulum. Sulforaphane also induced Ca(2+)-independent cell death that might involve apoptosis.  相似文献   

20.
Permeabilized cells attached to culture plates were used to evaluate the inhibition of inositol 1,4,5-trisphosphate-mediated release (IPMCR) by Ca2+. In AR42J cells, a pancreatic acinar cell line, when permeabilization and Ca2+ uptake were carried out at low ionized Ca2+ (0.06 microM), Ca2+ had little effect on IPMCR. On the other hand, when permeabilization and Ca2+ uptake were performed at 5 microM Ca2+, IPMCR was inhibited by Ca2+ with an apparent affinity of 0.24 microM. This inhibition could be modified by exposing the cytosol of permeabilized cells to low Ca2+. Hence, permeabilizing the cells in the presence of 5 microM Ca2+ and then exposing them to Ca2+ concentrations between 0.01 and 5 microM before washing and Ca2+ uptake in the presence of 5 microM Ca2+ resulted in a Ca2(+)-dependent loss of inhibitory activity. The loss of inhibitory activity occurred with an apparent affinity for Ca2+ of 0.21 microM. A similar phenomenon with a comparable apparent dissociation constant for Ca2+ was found with three other cell types from peripheral tissues: the osteosarcoma cell line UMR-106-01, the kidney inner medullary cell line IMCD, and primary culture of urinary bladder smooth muscle cells. The properties of inhibition of IPMCR by Ca2+ in cells from peripheral tissues differ from those previously described in neuronal tissues and suggest that a different factor(s) mediates the inhibition of IPMCR by Ca2+ in cells from peripheral and neuronal tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号