首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
1. Prey organisms can perceive cues to predation hazard and adopt low‐risk behaviours to increase survival. Animals with complex life cycles, such as insects, can exhibit such anti‐predatory behaviours in multiple life stages. 2. Cues to predation risk may induce ovipositing females to choose habitats with low predation risk. Cues to predation risk may also induce larvae to adopt facultative behaviours that reduce risk of predation. 3. One hypothesis postulates that anti‐predation behaviours across adult and larval stages may be negatively associated because selection for effective anti‐predator behaviour in one stage leads to reduced selection for avoidance of predators in other stages. An alternative hypothesis suggests that selection by predation favours multi‐component defences, with both avoidance of oviposition and facultative adoption of low‐risk behaviours by larvae. 4. Laboratory and field experiments were used to determine whether defensive responses of adult and larval mosquitoes are positively or negatively associated. The study tested effects of waterborne cues from predatory Toxorhynchites theobaldi on oviposition choices and larval behaviours of three of its common prey: Culex mollis, Limatus durhamii and Aedes albopictus. 5. Culex mollis shows strong anti‐predator responses in both life stages, consistent with the hypothesis of a multi‐component behavioural defence. The other two species showed no detectable responses to waterborne predator cues in either adult or larval stages. Larvae of these unresponsive species were significantly more vulnerable to this predator than was C. mollis. 6. For these mosquitoes, species appear either to have been selected for multi‐component defences against predation or to act in ways that could be called predator‐naïve.  相似文献   

2.
Carry-over effects influence trait responses in later life stages as a result of early experience with environmental cues. Predation risk is an influential stressor and selection exists for early recognition of threats. In particular, invasive species may benefit from carry-over effects by preemptively recognizing and responding to novel predators via latent developmental changes and embryonic learning. In a factorial experiment, we conditioned invasive American bullfrog embryos (Lithobates catesbeianus) to the odor of a novel fish predator, largemouth bass (Micropterus salmoides) alone or in combination with injured conspecific cues. We quantified developmental carryover in the larval life stage and found that individuals conditioned to the highest risk (fish and injured conspecific cues) grew into longer bodied larvae relative to larvae from lower risk treatments. We also assessed embryonic learning, a behavioral carry-over effect, and found an interaction between embryonic conditioning and larval exposure. Behavioral responses were only found in scenarios when predation risk varied in intensity across life history stages, thus requiring a more flexible antipredator strategy. This indicates a potential trade-off between the two strategies in larval growth and development rates, and time until metamorphosis. Our results suggest that early predator exposure and carry-over effects have significant impacts on life history trajectories for American bullfrogs. This research contributes to our understanding of a potentially important invasion mechanism in an anuran species of conservation concern.  相似文献   

3.
Temporal variation in predation risk may be an important determinant of prey antipredator behaviours. According to the risk allocation hypothesis, the strongest antipredator behaviours are expected when periods of high risk are short and infrequent. We tested this prediction in a laboratory experiment where common frog Rana temporaria tadpoles were raised form early larval stages until metamorphosis. We manipulated the time a predatory Aeshna dragonfly larva was present and recorded behavioural responses (activity) of the tadpoles at three different time points during the tadpoles' development. We also investigated how tadpole shape, size and age at metamorphosis were affected by temporal variation in predation risk. We found that during the two first time points activity was always lowest in the constant high-risk situation. However, antipredator response in the two treatments with brief high-risk situation increased as tadpoles developed, and by the third time point, when the tadpoles were close to metamorphosis, activity was as low as in the constant high-risk situation. Exposure to chemical cues of a predation event tended to reduce activity during the first time period, but caused no response later on. Induced morphological changes (deeper tail and shorter relative body length) were graded the response being stronger as the time spent in the proximity of predator increased. Tadpoles in the brief risk and chemical cue treatments showed intermediate responses. Modification of life history was only found in the constant high-risk treatment in which tadpoles had longer larval period and larger metamorphic size. Our results indicate that both behavioural and morphological defences were sensitive to temporal variation in predation risk, but behaviour did not respond in the manner predicted by the risk allocation model. We discuss the roles of concentration of predator chemical cues and prey stage-dependency in determining these responses.  相似文献   

4.
Animals are exposed to different predators over their lifespan. This raises the question of whether exposure to predation risk in an early life stage affects the response to predators in subsequent life stages. In this study, we used wood frogs (Rana sylvatica) to test whether exposure to cues indicating predation risk from dragonfly larvae during the wood frog larval stage affected post‐metamorphic activity level and avoidance of garter snake chemical cues. Dragonfly larvae prey upon wood frogs only during the larval stage, whereas garter snakes prey upon wood frogs during both the larval stage and the post‐metamorphic stage. Exposure to predation risk from dragonflies during the larval stage caused post‐metamorphic wood frog juveniles to have greater terrestrial activity than juvenile wood frogs that were not exposed to larval‐stage predation risk from dragonflies. However, exposure to predation risk as larvae did not affect juvenile wood frog responses to chemical cues from garter snakes. Wood frogs exposed as larvae to predation risk from dragonfly larvae avoided garter snake chemical cues to the same extent as wood frog larvae not exposed to predation risk from dragonfly larvae. Our results demonstrate that while some general behaviors exhibit carry‐over effects from earlier life stages, behavioral responses to predators may remain independent of conditions experienced in earlier life stages.  相似文献   

5.
Ireland DH  Wirsing AJ  Murray DL 《Oecologia》2007,152(1):162-168
Predators have been shown to alter the timing of switch points between life history stages, but few studies have addressed switch point plasticity in prey exposed simultaneously to conflicting predation pressure. We tested hatching responses of green frog (Rana clamitans) embryos subject to perceived predation risk from chemical cues released by two stage-specific predators, predicting that these predators would elicit: (1) directional hatching responses when presented independently, and (2) intermediate phenotypic responses when presented simultaneously. R. clamitans embryos in outdoor exclosures were exposed to cues from an egg predator (freshwater leeches; Nephelopsis obscura), a larval predator (dragonfly nymphs, Aeschna canadensis), and both predators in a 2 × 2 factorial experiment, and changes in hatchling size, hatchling developmental stage, and hatching time were compared to those for control embryos. Leeches alone induced embryos to hatch at a smaller size and an earlier developmental stage than controls, while dragonfly nymphs elicited a delay in egg hatching time that was associated with larger size and later developmental stage at hatching. Embryos failed to respond to simultaneous exposure to both predators, implying that responses to each occurred concurrently and were therefore dampened. Our results indicate that prey under threat from conflicting predators may manifest intermediate defensive phenotypes. Such intermediate responses may result in elevated rates of prey mortality with possible consequences at the population level.  相似文献   

6.
7.
While deploying immune defences early in ontogeny can trade‐off with the production and maintenance of other important traits across the entire life cycle, it remains largely unexplored how features of the environment shape the magnitude or presence of these lifetime costs. Greater predation risk during the juvenile stage may particularly influence such costs by (1) magnifying the survival costs that arise from any handicap of juvenile avoidance traits and/or (2) intensifying allocation trade‐offs with important adult traits. Here, we tested for predator‐dependent costs of immune deployment within and across life stages using the dragonfly, Pachydiplax longipennis. We first examined how larval immune deployment affected two traits associated with larval vulnerability to predators: escape distance and foraging under predation risk. Larvae that were induced to mount an immune response had shorter escape distances but lower foraging activity in the presence of predator cues. We also induced immune responses in larvae and reared them through emergence in mesocosms that differed in the presence of large predatory dragonfly larvae (Aeshnidae spp.). Immune‐challenged larvae had later emergence overall and lower survival in pools with predators. Immune‐challenged males were also smaller at emergence and developed less sexually selected melanin wing coloration, but these effects were independent of predator treatment. Overall, these results highlight how mounting an immune defence early in ontogeny can have substantial ecological and physiological costs that manifest both within and across life stages.  相似文献   

8.
Antipredator behaviour is an important fitness component in most animals. A co-evolutionary history between predator and prey is important for prey to respond adaptively to predation threats. When non-native predator species invade new areas, native prey may not recognise them or may lack effective antipredator defences. However, responses to novel predators can be facilitated by chemical cues from the predators’ diet. The red swamp crayfish Procambarus clarkii is a widespread invasive predator in the Southwest of the Iberian Peninsula, where it preys upon native anuran tadpoles. In a laboratory experiment we studied behavioural antipredator defences (alterations in activity level and spatial avoidance of predator) of nine anurans in response to P. clarkii chemical cues, and compared them with the defences towards a native predator, the larval dragonfly Aeshna sp. To investigate how chemical cues from consumed conspecifics shape the responses, we raised tadpoles with either a tadpole-fed or starved crayfish, or dragonfly larva, or in the absence of a predator. Five species significantly altered their behaviour in the presence of crayfish, and this was largely mediated by chemical cues from consumed conspecifics. In the presence of dragonflies, most species exhibited behavioural defences and often these did not require the presence of cues from predation events. Responding to cues from consumed conspecifics seems to be a critical factor in facilitating certain behavioural responses to novel exotic predators. This finding can be useful for predicting antipredator responses to invasive predators and help directing conservation efforts to the species at highest risk.  相似文献   

9.
10.
《Zoology (Jena, Germany)》2014,117(2):139-145
For organisms with complex life histories it is well known that risk experienced early in life, as embryos or larvae, may have effects throughout the life cycle. Although carryover effects have been well documented in invertebrates with different levels of parental care, there are few examples of predator-induced responses in externally brooded embryos. Here, we studied the effects of nonlethal predation risk throughout the embryonic development of newly spawned eggs carried by female shrimp on the timing of egg hatching, hatchling morphology, larval development and juvenile morphology. We also determined maternal body mass at the end of the embryonic period. Exposure to predation risk cues during embryonic development led to larger larvae which also had longer rostra but reached the juvenile stage sooner, at a smaller size and with shorter rostra. There was no difference in hatching timing, but changes in larval morphology and developmental timing showed that the embryos had perceived waterborne substances indicative of predation risk. In addition to carryover effects on larval and juvenile stages, predation threat provoked a decrease of body mass in mothers exposed to predator cues while brooding. Our results suggest that risk-exposed embryos were able to recognize the same infochemicals as their mothers, manifesting a response in the free-living larval stage. Thus, future studies assessing anti-predator phenotypes should include embryonic development, which seems to determine the morphology and developmental time of subsequent life-history stages according to perceived environmental conditions.  相似文献   

11.
Vonesh JR 《Oecologia》2005,143(2):280-290
While theoretical studies of the timing of key switch points in complex life cycles such as hatching and metamorphosis have stressed the importance of considering multiple stages, most empirical work has focused on a single life stage. However, the relationship between the fitness components of different life stages may be complex. Ontogenetic switch points such as hatching and metamorphosis do not represent new beginnings—carryover effects across stages can arise when environmental effects on the density and/or traits of early ontogenetic stages subsequently alter mortality or growth in later stages. In this study, I examine the effects of egg- and larval-stage predators on larval performance, size at metamorphosis, and post-metamorphic predation in the African tree frog Hyperolius spinigularis. I monitored the density and survival of arboreal H. spinigularis clutches in the field to estimate how much egg-stage predation reduced the input of tadpoles into the pond. I then conducted experiments to determine: (1) how reductions in initial larval density due to egg predators affect larval survival and mass and age at metamorphosis in the presence and absence of aquatic larval predators, dragonfly larvae, and (2) how differences in mass or age at metamorphosis arising from predation in the embryonic and larval environments affect encounters with post-metamorphic predators, fishing spiders. Reduction in larval densities due to egg predation tended to increase per capita larval survival, decrease larval duration and increase mass at metamorphosis. Larval predators decreased larval survival and had density-dependent effects on larval duration and mass at metamorphosis. The combined effects of embryonic and larval-stage predators increased mass at metamorphosis of survivors by 91%. Larger mass at metamorphosis may have immediate fitness benefits, as larger metamorphs had higher survival in encounters with fishing spiders. Thus, the effects of predators early in ontogeny can alter predation risk even two life stages later.  相似文献   

12.
Animals often alter their behaviour, morphology and physiology in the presence of predators. These induced defences can be fine‐tuned by a variety of environmental factors such as predator species, acute predation risk or food availability. It has, however, remained unclear what cues influence the extent and quality of induced defences and how the information content of these cues interact to determine the development of antipredator defences. We performed an experiment to study the significance of direct chemical cues, originating from the predators themselves, and indirect cues, released by attacked or consumed prey, for phenotypic responses in Rana dalmatina tadpoles. We reared tadpoles in the presence of caged predators (Triturus vulgaris, Aeshna cyanea) fed either one or three tadpoles every other day outside the tadpole‐rearing tanks. Fifteen hours after food provisioning, predators were put back into the tanks containing focal tadpoles either after washing (direct + digestion‐released cues) or with the water containing remnants of the prey (direct + all types of indirect cues). Our results suggest that direct cues together with digestion‐released cues can be sufficient to induce strong antipredator responses. Induced defences depended on both direct cues, affecting predator‐specific responses, and the quantity of indirect cues, resulting in graded responses to differences in predation threat. Moreover, direct and indirect cues interacted in behaviour, resulting in predator‐specific graded responses. We also observed a decrease in the extent of predator‐induced responses in large tadpoles as compared to small ones. Our results, thus, suggest that prey integrate multiple cues about predators to optimize induced defences and that this process changes during ontogeny.  相似文献   

13.
In natural systems, organisms are frequently exposed to spatial and temporal variation in predation risk. Prey organisms are known to develop a wide array of plastic defences to avoid being eaten. If inducible plastic defences are costly, prey living under fluctuating predation risk should be strongly selected to develop reversible plastic traits and adjust their defences to the current predation risk. Here, we studied the induction and reversibility of antipredator defences in common frog Rana temporaria tadpoles when confronted with a temporal switch in predation risk by dragonfly larvae. We examined the behaviour and morphology of tadpoles in experimental treatments where predators were added or withdrawn at mid larval development, and compared these to treatments with constant absence or presence of predators. As previous studies have overlooked the effects that developing reversible anti‐predator responses could have later in life (e.g. at life history switch points), we also estimated the impact that changes in antipredator responses had on the timing of and size at metamorphosis. In the presence of predators, tadpoles reduced their activity and developed wider bodies, and shorter and wider tails. When predators were removed tadpoles switched their behaviour within one hour to match that found in the constant environments. The morphology matched that in the constant environments in one week after treatment reversal. All these responses were highly symmetrical. Short time lags and symmetrical responses for the induction/reversal of defences suggest that a strategy with fast switches between phenotypes could be favoured in order to maximise growth opportunities even at the potential cost of phenotypic mismatches. We found no costs of developing reversible responses to predators in terms of life‐history traits, but a general cost of the induction of the defences for all the individuals experiencing predation risk during some part of the larval development (delayed metamorphosis). More studies examining the reversibility of plastic defences, including other type of costs (e.g. physiological), are needed to better understand the adaptive value of these flexible strategies.  相似文献   

14.
Phenotypically plastic changes in response to variation in perceived predation risk are widespread, but little is known about if and how social environment modulates induced responses to predation risk. We investigated the influence of perceived predation risk (i.e. chemical cues from a predator) and social environment (i.e. one, two or 20 individuals reared together) on three‐spined stickleback (Gasterosteus aculeatus) morphology in a factorial common garden experiment. We found that exposure to chemical cues from potential predators did not influence growth or body condition or induce more robust morphological defences (i.e. lateral plate numbers and dorsal spine lengths). However, sticklebacks exposed to predator cues developed longer caudal peduncles and larger eyes as compared with fish from the control treatment. As these responses may improve sticklebacks’ ability to avoid piscine predation, they might be adaptive. Social environment/density also influenced expression of some traits, but these effects were independent of predation‐risk treatment effects. In general, these results suggest that apart from the classic morphological defence structures, which appear mostly constitutive, three‐spined sticklebacks are capable of expressing potentially adaptive morphological responses to chemical cues from potential predators.  相似文献   

15.
Antipredator responses often involve changes in several phenotypic traits and these changes interactively influence fitness. However, gaining insight into how the overall fitness effect of the overall response comes about is notoriously difficult. One promising avenue is to manipulate a single defensive trait and observe how that modifies fitness as well as the expression of other inducible responses. In chemically‐defended animals, toxins are likely to be costly to produce but it is still unknown how their depletion influences other characteristics. In the present study, we artificially depleted bufadienolide toxin stores in common toad (Bufo bufo) tadpoles, and assessed the effect of this with respect to the interaction with predator presence and limited food availability. We found that toxin depletion in tadpoles did not significantly affect any of the measured life‐history traits. Tadpoles in the predator treatment exhibited an elevated development rate, although this was only apparent when food availability was limited. Also, body mass at metamorphosis was lower in tadpoles exposed to chemical cues indicating a predation threat and when food availability was limited. These results provide evidence that, in larval common toads, the expression of inducible defences may incur fitness costs, whereas chemical defences are either expressed constitutively or, if inducible, elevated toxin production has negligible costs.  相似文献   

16.
Kishida O  Nishimura K 《Oecologia》2004,140(3):414-421
Predator induced morphological defenses are marked morphological shifts induced directly by cues associated with a predator. Generally, remote cues, i.e., chemical substances emitted from predators or injured conspecifics, are considered to be ideal signals to induce morphological change in aquatic environments rather than close cues, i.e., close chemical or tactile cues, since chemical substances that can propagate over relatively long distances and persist for a long period may allow organisms to keep safe and to deliberately change their morph. In fact, most organisms adopting an inducible morphological defense utilize remote chemical cues to detect predation risk and to produce morphological defenses. In this paper, we report a unique and functionally well designed inducible morphological defense strategy where the induction process requires close cues from a predator. The tadpoles of Rana pirica exhibited a bulgy bodied morphology when threatened with predation by larval salamanders, Hynobius retardatus, in close proximity. Predation trials and a function experiment showed that the induced bulgy morph is an adaptive defense phenotype against the gape-limited predator larval H. retardatus. Furthermore, R. pirica tadpoles use two adaptive strategies in terms of cost saving, i.e., adjustment of the extent of bulginess according to predation risk and reversibility by actual shrink of bulgy body after removing the predation threat. In general, R. pirica hatch earlier than H. retardatus. In natural ponds, during the early developmental stage R. pirica tadpoles live in close proximity to young H. retardatus larvae. As they grow, the salamanders gradually become serious predators and the predator–prey interaction becomes intimate. After a while, predation, cannibalism and metamorphosis decrease the number of salamanders in the ponds, and the predator–prey interaction weakens. Such a phenology in the predator–prey interaction allows the evolution of a close-cue detection system and adaptive cost-saving strategies. Our results highlight that the characteristics of the inducible defense depend on the intensity and specificity of the predator–prey system.  相似文献   

17.
Environmental conditions experienced early in the ontogeny can have a strong impact on individual fitness and performance later in life. Organisms may counteract the negative effects of poor developmental conditions by developing compensatory responses in growth and development. However, previous studies on compensatory responses have largely ignored the effects that poor embryonic conditions could have during the later life stages. In this study, we examined the effects of artificially delayed development in early life over two later life history transitions by investigating the compensatory growth of larval moor frogs Rana arvalis in response to temperature variation during embryonic development, and the associated costs during the larval ′and postmetamorphic stages. Low temperature during embryonic stage lead to delayed hatching at smaller size. The groups with delayed embryonic development showed strong compensatory growth during the larval stage, and reached similar metamorphic size than the controls in a shorter time. However, the most strongly delayed group was not able to fully catch up the total development time. These compensatory responses were found in the absence of photoperiod cues indicating that the delay in embryonic development was sufficient to initiate the compensatory response in larval growth and development. No apparent costs of compensatory growth were detected in terms of morphology or locomotor performance at the juvenile stage. We found that compensatory responses can be activated as early as at the embryonic stage and extend over several consecutive life history transitions, mitigating the effects of poor conditions experienced early in development. Potential short‐term costs in natural environments and the occurrence of long‐term costs, which prevent the generalisation of a faster larval life style, are discussed.  相似文献   

18.
In Drosophila, pulses of the steroid hormone ecdysone trigger larval molting and metamorphosis and coordinate aspects of embryonic development and adult reproduction. At each of these developmental stages, the ecdysone signal is thought to act through a heteromeric receptor composed of the EcR and USP nuclear receptor proteins. Mutations that inactivate all EcR protein isoforms (EcR-A, EcR-B1, and EcR-B2) are embryonic lethal, hindering analysis of EcR function during later development. Using transgenes in which a heat shock promoter drives expression of an EcR cDNA, we have employed temperature-dependent rescue of EcR null mutants to determine EcR requirements at later stages of development. Our results show that EcR is required for hatching, at each larval molt, and for the initiation of metamorphosis. In EcR mutants arrested prior to metamorphosis, expression of ecdysone-responsive genes is blocked and normal ecdysone responses of both imaginal and larval tissues are blocked at an early stage. These results show that EcR mediates ecdysone signaling at multiple developmental stages and implicate EcR in the reorganization of imaginal and larval tissues at the onset of metamorphosis.  相似文献   

19.
Abstract.  1. Predators may affect prey populations by direct consumption, and by inducing defensive reactions of prey to the predation risk. Food scarcity frequently has effects on the inducible defences of prey, but no consistent pattern of food–predation risk interaction is known.
2. In this study the combined effect of food shortage and predation-risk perception in larvae of the mosquito Culex pipiens was investigated. Water exposed to the aquatic predator bug Notonecta glauca was used as a source of predation intimidation. Mosquito larvae were reared in three different media containing either no predator cues or the cues of N. glauca that had been fed on either C. pipiens larvae or on Daphnia magna . Food was provided in favourable or limited amount for these set-ups.
3. The results showed that chemical cues from the predators fed with prey's conspecifics caused a decreased survival, delayed pre-imaginal development, and reduction in body size of emerged mosquitoes, whereas chemical cues from predators fed with D. magna caused only delayed development. Food scarcity significantly exacerbates the negative effect of the predator cues on pre-imaginal development of C. pipiens . Effects of the cues on larval development and body size of imagoes are significantly stronger for females than for males.
4. The present study suggests that when food is limited, predators can affect population dynamics of prey not only by direct predation, but also by inducing lethal and sublethal effects due to perception of risk imposed by chemical cues. To understand the effects of predators on mosquito population dynamics, environmental parameters such as food deficiency should be considered.  相似文献   

20.
Adaptive phenotypic plasticity is widespread and involves diverse phenotypes. Key environmental stressors, such as predation risk, can simultaneously induce changes in multiple traits, but the magnitude of response is dependent upon the environmental conditions. Species that utilize temporary ponds are expected to exhibit stronger predator‐induced responses in the form of morphology than behaviour (i.e. reduced activity) to meet the demands of rapid development by maintaining high foraging activity while reducing predation risk via morphologically plastic traits. In a laboratory experiment, I examined the effects of predator chemical cues and conspecific alarm cues on activity, development and morphology on Leptodactylus bufonius tadpoles. This species has terrestrial oviposition and completes the early part of its development outside of ephemeral and temporary ponds in the Gran Chaco ecoregion of South America. Tadpoles in the predator treatments exhibited both behavioural and morphological predator‐induced plastic responses. Tadpoles tended to possess shorter, deeper tails when exposed to predators. The greatest reduction in activity was observed in tadpoles exposed to both predator and conspecific alarm cues, which subsequently resulted in the slowest development. Temporary and ephemeral pond adapted species with terrestrial oviposition may capitalize on a head start in development by being able to afford reduced growth rates via a reduction in activity. This may occur when the constraints imposed by pond hydroperiod (e.g. risk of pond drying) are relaxed when compared with species with aquatic oviposition, which must undergo all stages of development during the pond's hydroperiod. Thus, in addition to the predator and hydroperiod gradients, examining phenotypically plastic responses along a ‘terrestriality gradient’ in a comparative framework would provide insights as to the costs and benefits of increasing terrestriality in anuran reproductive modes to environmental stressors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号