首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Acyclic mare given oestradiol for 3 days to simulate the preovulatory plasma oestradiol surge showed a non-significant 37% decrease in plasma LH during treatment. When GnRH analogue injections were given with oestradiol on Days 1--3, oestradiol had no effect on each GnRH-induced LH increase, but LH increases were more prolonged following subsequent GnRH injections on Days 4--7 when oestradiol was no longer being given. A much greater prolongation of LH release occurred when the course of GnRH injections was commenced after oestradiol treatment ceased; the LH response was almost identical to the prolonged periovulatory LH surge of the normal cycle. Therefore, it appears that the timing of the oestradiol surge, in relation to other hormonal events, is critical in inducing the uniquely prolonged periovulatory LH surge of the mare.  相似文献   

2.
Four cows released an LH surge after 1.0 mg oestradiol benzoate administered i.m. during the post-partum anoestrous period with continuing low plasma progesterone. A similar response occurred in the early follicular phase when plasma progesterone concentration at the time of injection was less than 0.5 ng/ml. Cows treated with a progesterone-releasing intravaginal device (PRID) for 8 days were injected with cloprostenol on the 5th day to remove any endogenous source of progesterone. Oestradiol was injected on the 7th day when the plasma progesterone concentration from the PRID was between 0.7 and 1.5 ng/ml. No LH surge occurred. Similarly, oestradiol benzoate injected in the luteal phase of 3 cows (0.9-2.1 ng progesterone/ml plasma) did not provoke an LH surge. An oestradiol challenge given to 3 cows 6 days after ovariectomy induced a normal LH surge in each cow. However, when oestradiol treatment was repeated on the 7th day of PRID treatment, none released LH. It is concluded that ovaries are not necessary for progesterone to inhibit the release of LH, and cows with plasma progesterone concentrations greater than 0.5 ng/ml, whether endogenous or exogenous, did not release LH in response to oestradiol.  相似文献   

3.
Preovulatory bovine follicles (n = 28) were collected at different times after the onset of standing oestrus until shortly before ovulation. In-vitro conversion of tritiated androstenedione in the presence of NADPH by homogenates of the follicular wall was compared in phases relative to the LH peak. During phase 0 (before the LH surge) conversion into oestradiol-17 beta was high and production of oestrone was about 8-fold lower. During phases 1 (0-6 h after the LH peak) and 2A (6-14 h after the LH peak) the production of oestradiol and oestrone remained constant; the percentage of remaining androstenedione increased. In phase 2B (14-20 h after the LH peak) conversion into oestradiol and oestrone had decreased to about one third correlating with a higher percentage of remaining androstenedione. In phase 3 (20 h after the LH peak until ovulation) conversion into oestradiol and oestrone remained constant. The ratio between the production of oestrone and oestradiol remained constant throughout the phases of preovulatory development (0.13), indicating a concurrent inhibition of aromatase and 17 beta-hydroxysteroid dehydrogenase activities. Conversion into 19-hydroxyandrostenedione showed a pattern similar to that of oestradiol, and testosterone was produced in minute quantities. The results indicate that in preovulatory bovine follicles eventual inhibition of aromatization takes place at about 14 h after the preovulatory LH peak.  相似文献   

4.
Insertion of osmotic minipumps containing 1 mg ovine LH on Day 1 (oestrus) elevated circulating serum concentrations of LH, progesterone and androstenedione when compared with values at pro-oestrus. Ovulation was blocked for at least 2 days at which time there were twice the normal numbers of preovulatory follicles. Follicular and thecal progesterone production in vitro was elevated when compared with that in pro-oestrous controls. Follicular and thecal androstenedione production in vitro was lower than in controls even though serum concentrations of androstenedione were elevated; the higher androstenedione values may be due to the increase in number of preovulatory follicles when compared with pro-oestrous controls. Follicles from LH-treated hamsters aromatized androstenedione to oestradiol and follicular production of oestradiol was similar to that in pro-oestrous follicles despite low follicular androstenedione production in the LH-treated group. Treatment with 20 i.u. hCG on Days 4 or 6 after insertion of an LH osmotic minipump on Day 1 induced ovulation of approximately 30 ova, indicating that the blockade of ovulation was not due to atresia of the preovulatory follicles. Serum progesterone concentrations on Days 2, 4 and 6 in LH-treated hamsters were greater than 17 nmol/l, suggesting that the blockade of ovulation might have been due to prevention of the LH surge by high serum progesterone concentrations.  相似文献   

5.
Introduction of rams to ovariectomized ewes treated with oestradiol implants (N = 10) increased the frequency of LH pulses from 4 X 8 to 10 X 6 pulses per 12 h. This effect was reflected by increases in mean levels of LH and the basal levels upon which the pulses were superimposed. In ewes that had not been treated with oestradiol (N = 5), there was no significant increase in pulse frequency but mean and basal levels of LH increased slightly after the introduction of rams. In a second experiment, similar effects of the introduction of rams were seen in ovariectomized ewes treated with oestradiol or oestradiol + androstenedione (N = 16), but no significant effects of the rams were observed in untreated ewes (N = 8) or ewes treated only with androstenedione (N = 7). No preovulatory surges of LH were observed in the 30-h period after the introduction of rams. It was concluded that the ram stimulus probably evokes the increase in pulse frequency by inhibiting the negative feedback action of oestradiol, and that the surge normally observed in entire ewes is dependent on the ovarian response to these pulses. However, the observation of responses in some ewes not treated with oestradiol also raises the possibility that the ram stimulus can act directly on the hypothalamic neurones that control the secretion of LH, and that this effect is enhanced in the presence of oestrogen.  相似文献   

6.
Concentrations of oestradiol-17 beta, progesterone, and luteinizing hormone (LH) were measured in plasma collected at 6- to 12-h intervals from tammars around the time of parturition and post-partum oestrus. Parturition occurred on Day 26 or 27 after reactivation of lactation-delayed pregnancy and coincided with a precipitous decline in progesterone levels. A sharp rise in oestradiol, from basal concentrations of less than 10 pg/ml to a peak of 13 to 32 pg/ml, as well as oestrus, followed the drop in progesterone by 8.3 and 9.8 h, respectively. The LH surge was dependent on the oestradiol rise and followed it by 7 h. Ovulation followed mating by about 30 h and the LH surge by 24 h. Removal of the ovary with the large Graafian follicle prevented the oestradiol rise, oestrus and the LH surge, but not parturition. Peripartum changes in peripheral oestradiol do not appear to be involved in initiation of parturition but the oestradiol rise and associated change in the oestradiol:progesterone ratio are important signals for post-partum oestrus and the LH surge.  相似文献   

7.
A dose of 100 microliter of a potent ovine LHRH gamma globulin inhibited ovulation in the cyclic rat when administered at 12:00 h on the day of pro-oestrus. A dose of 10 ml of the preparation was administered i.v. to female stumptailed macaques to achieve circulating antibody titres 3-4-fold higher than in the rat. In an ovariectomized macaque, this caused a marked fall in serum concentrations of LH to less than 10% of pretreatment values and also a significant, though less pronounced, fall in FSH. Six monkeys were treated with the LHRH gamma globulin during the mid-late follicular phase of the cycle. In 2 monkeys in which serum oestradiol concentrations were less than 100 pg/ml at the time of antibody administration, the rising oestradiol levels were abruptly suppressed and the normal mid-cycle LH surge failed to occur. Serum concentrations of LH and FSH declined to low levels for 8-10 days after which time normal follicular development occurred. In the remaining 4 monkeys in which follicular development was more advanced as indicated by serum oestradiol concentrations of greater than 100 pg/ml, the antibodies induced either a transient decline or had no effect on the rising serum concentration of oestradiol. An LH/FSH surge followed by a rise in serum progesterone occurred in these macaques. When the antibodies were administered to a further 6 macaques, which had also been treated with oestradiol benzoate during the early follicular phase to induce an LH surge, the neutralization of LHRH again failed to block the surge even when the dose of antibody was increased to 20 ml. The results show that LHRH antibodies were unable to block the LH surge in the macaque. They contrast with results obtained with LHRH immunoneutralization in the sheep, rat, hamster, mouse and bird and suggest that the ability of oestrogen to induce an LH surge by acting directly on the LHRH-primed anterior pituitary gland is more dominant in the primate.  相似文献   

8.
This study was conducted to test the hypothesis that the rate (dose/time) at which oestradiol-17 beta (oestradiol) is presented to the hypothalamo-pituitary axis influences secretion of LH, FSH and prolactin. A computer-controlled infusion system was used to produce linearly increasing serum concentrations of oestradiol in ovariectomized ewes over a period of 60 h. Serum samples were collected from ewes every 2 h from 8 h before to 92 h after start of infusion, and assayed for oestradiol, LH, FSH and prolactin. Rates of oestradiol increase were categorized into high (0.61-1.78 pg/h), medium (0.13-0.60 pg/h) and low (0.01-0.12 pg/h). Ewes receiving high rates of oestradiol (N = 11) responded with a surge of LH 12.7 +/- 2.0 h after oestradiol began to increase, whereas ewes receiving medium (N = 15) and low (N = 11) rates of oestradiol responded with a surge of LH at 19.4 +/- 1.7 and 30.9 +/- 2.0 h, respectively. None of the surges of LH was accompanied by a surge of FSH. Serum concentrations of FSH decreased and prolactin increased in ewes receiving high and medium rates of oestradiol, when compared to saline-infused ewes (N = 8; P less than 0.05). We conclude that rate of increase in serum concentrations of oestradiol controls the time of the surge of LH and secretion of prolactin and FSH in ovariectomized ewes. We also suggest that the mechanism by which oestradiol induces a surge of LH may be different from the mechanism by which oestradiol induces a surge of FSH.  相似文献   

9.
Plasma concentrations of testosterone, androstenedione and progesterone in freemartins, and normal cyclic and non-cyclic heifers were studied. The plasma testosterone concentrations were in general less than 10 pg/ml in all animals. The mean androstenedione concentration of 28 pg/ml in 10- to 12-month-old freemartins was significantly lower than the mean of 58 to 60 pg/ml for normal 10- to 12-month-old heifers. At 24 months of age the mean androstenedione concentration in the freemartins had risen significantly to 65 pg/ml.  相似文献   

10.
Concentrations of LH/CG, androstenedione and testosterone rose in early pregnancy to maximum values at 6--10 weeks. Thereafter LH/CG levels declined and androstenedione and testosterone levels remained at plateau values or declined until term. Progesterone, oestradiol-17 beta and oestrone increased after ovulation and remained high throughout pregnancy. At 12 weeks, when LH/CG levels were falling, progesterone and oestradiol rose well above the luteal-phase levels which were maintained for the first 12 weeks. Progesterone declined in the 2 weeks before birth, while oestradiol and oestrone remained high. Pregnancies of an unknown stage were dated by reference to a graph of uterine diameter, measured by abdominal palpation, in animals at known times after conception. Measurement of progesterone concentrations during the conception cycle gave more accurate dating and showed that the gestation length was 144 days.  相似文献   

11.
The surge of LH that induces ovulation in mammals showing spontaneous ovulation is precipitated by the positive feedback of increasing oestrogens from the developing follicles in the ovary. In eutherians, exogenous oestrogens can mimic this effect by eliciting an LH surge in females, but not usually in males. The absence of a positive LH response to eutherian males is either due to an acute suppression by the secretory products of the testes during adulthood or the permanent disabling of the system by testosterone during early development. This phenomenon is examined in tammar wallabies, Macropus eugenii. The results show that the oestradiol-LH positive feedback response is sexually dimorphic in this marsupial. A surge in plasma LH occurred between 15 and 28 h after injection of 2.5 micrograms oestradiol benzoate kg-1 in 13 of 16 intact females and 4 of 4 ovariectomized females, but in none of 11 intact males. Five females each implanted with a 100 mg testosterone pellet 3 months earlier failed to produce an LH surge. Four males castrated in adulthood and three adult males castrated before puberty also failed to show an LH surge. However, three males castrated 24-26 days after birth showed an unambiguous LH surge when challenged with oestradiol benzoate during adulthood. Thus, in tammar wallabies, the ability to generate an LH surge to oestradiol is a sexually dimorphic response that is suppressed in the male by the organizational effects of the testes in early life and presumably supplemented by an inhibitory effect of circulating testosterone in adulthood.  相似文献   

12.
Two animals with XY gonadal dysgenesis both had a reproductive tract similar in size to that found in sexually immature heifers, but neither had normal testicular or ovarian tissue. All cells examined in both animals contained XY chromosomes and spinal cord neurones were sex chromatin negative. Basal LH concentrations averaged 3.1 ng/ml in Animal 1 and 2.4 ng/ml in Animal 2 but increased within 12 h of injecting oestradiol to peak concentrations of 125 and 11 ng/ml respectively. Animal 1 displayed a distinct pulsatile LH release pattern with a highly repeatable decline phase at each pulse. A GnRH injection produced a rapid rise in plasma LH in both animals, sustained in Animal 1 at greater than 500 ng/ml for more than 2 h. Each animal displayed behavioural symptoms of oestrus within 12 h of being injected with 3 mg oestradiol benzoate and was repeatedly served by a bull. These studies indicated that both animals differed from freemartins and had some hypothalamic and pituitary response patterns resembling those reported for female cattle.  相似文献   

13.
Interrelationships of circulating hormone levels and their implications for follicular development were studied throughout the oestrous cycle with emphasis on the perioestrous period in heifers and cows. The oestradiol level showed a major peak (45 pmol/1) before and coinciding with oestrus, and a second peak (27 pmol/1) around day 5–6 (day 0: day of first standing oestrus); it was low during the luteal phase of the cycle when progesterone was higher than 14 nmol/1 from day −12 to day −2. Large antral follicles, which had developed during the luteal phase, did not secrete significant amounts of oestradiol, degenerated after luteolysis, and were replaced by a newly developing follicle which became preovulatory. Parallel with this development the oestradiol level increased from the onset of luteolysis to reach a plateau about 26 h before the onset of oestrus. The interval between the onset of luteolysis and the onset of oestrus was 58 h; luteolysis proceeded at a slower rate in heifers than in cows. At 4.6 h after the onset of oestrus the maximum of the LH surge was recorded; the LH surge appeared to be postponed in the period October–December in comparison to the period August–September. The maximum of the LH surge was higher in heifers (45 μg/l) than in cows (30 μg/l), but its duration was similar (8.0 h). The oestradiol level decreased significantly from 6 h after the maximum of the LH surge, and standing oestrus (duration 18 h) was terminated almost at the same time as the return to basal values of oestradiol. Cortisol and prolactin levels did not show a peak during the peri-oestrus period. Cortisol fluctuated irrespective of the stage of the oestrus cycle and prolactin was significantly higher during the luteal phase.

The results of this study indicate that development of the preovulatory follicle starts in the cow at the onset of luteolysis, about 2.5 days before the preovulatory LH surge, and that oestradiol secretion by this follicle is possibly inhibited by the LH surge.  相似文献   


14.
The effect of sustained high plasma levels of prolactin, induced by repeated 2-h i.v. injections of thyrotrophin-releasing hormone (TRH; 20 micrograms), on ovarian oestradiol secretion and plasma levels of LH and FSH was investigated during the preovulatory period in the ewe. Plasma levels of progesterone declined at the same rate after prostaglandin-induced luteal regression in control and TRH-treated ewes. However, TRH treatment resulted in a significant increase in plasma levels of LH and FSH compared to controls from 12 h after luteal regression until 5 to 6 h before the start of the preovulatory surge of LH. In spite of this, and a similar increase in pulse frequency of LH in control and TRH-treated ewes, ovarian oestradiol secretion was significantly suppressed in TRH-treated ewes compared to that in control ewes. The preovulatory surge of LH and FSH, the second FSH peak and subsequent luteal function in terms of plasma levels of progesterone were not significantly different between control and TRH-treated ewes. These results show that TRH treatment, presumably by maintaining elevated plasma levels of prolactin, results in suppression of oestradiol secretion by a direct effect on the ovary in the ewe.  相似文献   

15.
The pattern of change in plasma progesterone and LH concentrations was monitored in Clun Forest ewes at a natural oestrus and compared to that observed after removal of progesterone implants. The rate of decline in plasma progesterone concentrations after implant withdrawal (1.8 +/- 0.2 ng/ml h-1) was significantly greater (P less than 0.001) than that observed at natural luteolysis (0.2 +/- 0.1 ng/ml h-1), and this resulted in an abnormal pattern of change in tonic LH secretion up to the time of the preovulatory LH surge. This more rapid rate of progesterone removal was also associated with a shortening of the intervals from the time that progesterone concentrations attained basal values to the onset of oestrus (P less than 0.05) and the onset of the preovulatory LH surge (P less than 0.01). However, there were no significant differences in the duration of the LH peak, preovulatory peak LH concentration, ovulation rate or the pattern of progesterone concentrations in the subsequent cycle. It is suggested that the abnormal patterns of change in progesterone and tonic LH concentrations may be one factor involved in the impairment of sperm transport and abnormal patterns of oestradiol secretion known to occur at a synchronized oestrus.  相似文献   

16.
Mature Merino ewes in which the left ovary and its vascular pedicle had been autotransplanted to the neck were divided into control (N = 5) and immunized groups (N = 6). The immunized ewes were treated (2 ml s.c.) with Fecundin 1 and 4 weeks before the start of blood sampling. Ovarian and jugular venous blood was collected every 10 min at two stages of the follicular phase (21-27 h and 38-42 h after i.m. injection of 125 micrograms of a prostaglandin (PG) analogue) and during the mid-luteal phase (8 h at 15-min intervals). The ewes were monitored regularly for luteal function and preovulatory LH surges. Hormone concentrations and anti-androstenedione titres were assayed by RIA and ovarian secretion rates of oestradiol-17 beta, progesterone and androstenedione were determined. After the booster immunization, progesterone increased simultaneously with titre in immunized ewes, reaching 30 ng/ml at the time of PG injection when median titre was 1:10,000. All ewes responded to PG with LH surges 42-72 h later: 2 of the immunized ewes then had a second LH surge within 3-4 days at a time when peripheral progesterone values were 2-3 ng/ml. The frequency of steroid and LH pulses was greater in immunized ewes (P less than 0.05) during the luteal phase but not the follicular phase. The secretion rate of androstenedione was 6-10 times greater (19-37 ng/min; P less than 0.001) in immunized ewes at all sampling stages. Progesterone secretion rates were 3 times greater (16 micrograms/min; P less than 0.001) during the luteal phase in immunized ewes. The amplitude of oestradiol pulses was significantly reduced in immunized ewes (4.8 vs 2.1 ng/min at +24 h and 6.5 vs 2.8 ng/min at +40 h in control and immunized ewes, respectively: P less than 0.05) during the follicular phase. However, the mean secretion rate of oestradiol at each phase of the cycle was not significantly different between treatment groups. Analysis of bound and free steroid using polyethylene glycol showed that greater than 98% of peripheral and ovarian venous androstenedione and 86% of peripheral progesterone was bound in immunized ewes but there was no appreciable binding (less than 0.1%) in control ewes. Similarly, 50% of ovarian venous oestradiol was bound in immunized ewes compared to 15% in control ewes. We conclude that immunization against androstenedione increases the secretion rate of androstenedione and progesterone but not of oestradiol.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Peripheral plasma progesterone concentrations exhibited an increase 10 days before implantation, coinciding with the resumption of blastocyst growth and with a decrease in plasma androgen values (DHA, androstenedione, testosterone). No definite pattern of oestrone was observed and oestradiol concentrations remained undetectable. The production of steroids by dispersed luteal cells showed that the growth of the corpora lutea paralleled that of blastocysts and resulted in hypertrophy followed by hyperplasia of the luteal cell. The production of progesterone in the medium increased with blastocyst size up to implantation; it was enhanced by mink charcoal-treated serum, but prolactin, LH, FSH or a combination of these hormones did not affect the progesterone production, whatever the stage of diapause. DHA and androstenedione secretion increased in the two last stages of blastocyst growth and was enhanced by LH. The conversion of androstenedione and testosterone into oestrone and oestradiol was observed at all stages of embryonic diapause, indicating that corpora lutea contain aromatase activity even at an early stage. The secretion of oestrone was higher than that of oestradiol. The non-luteal tissue contributed up to 50% of the steroid production; while progesterone and androgen production remained constant, that of oestradiol decreased at the end of the delay period. These results indicated a change in the size and the secretory capacity of the luteal cell related to blastocyst development and implantation. Although progesterone was the main product of the corpora lutea, androgens and oestrogens were also secreted.  相似文献   

18.
The aim of this study was to investigate incompetence for oestradiol-induced LH surges in long-term ovariectomized gilts and male pigs. Gilts (250 days old; n = 36), which had been ovariectomized 30 (OVX 30) or 100 days (OVX 100) before the start of treatment, were challenged i.m. with oestradiol benzoate and were either given no further treatment, fed methallibure to inhibit endogenous GnRH release or fed methallibure and given i.v. pulses of 100 or 200 ng GnRH agonist at 1 h intervals during the LH surge (48-96 h after oestradiol benzoate). The same treatments were applied to long-term orchidectomized male pigs (ORC, n = 23). In addition, one ORC group was not injected with oestradiol benzoate but was fed methallibure and given pulses of 200 ng GnRH agonist. Oestradiol benzoate alone induced an LH surge in the OVX 30 group only (5/6 gilts), methallibure suppressed (P < 0.05) oestradiol benzoate-induced LH secretion, while pulses of 100 ng GnRH agonist in animals fed methallibure produced LH surges in four of six OVX 30 and four of six OVX 100 gilts. The induced LH surges were similar to those produced by oestradiol benzoate alone in OVX 30 gilts. Pulses of 200 ng GnRH agonist produced LH surges in OVX 30 (6/6) and OVX 100 (6/6) gilts and increased the magnitude of the induced LH surge in OVX 100 gilts (P < 0.05 compared with 100 ng GnRH agonist or OVX 30 control). Pulses of 200 ng GnRH agonist also induced LH surge release in ORC male pigs (5/6), but were unable to increase LH concentrations in a surge-like manner in ORC animals that had not been given oestradiol benzoate, indicating that oestradiol increases pituitary responsiveness to GnRH. These results support the hypothesis that oestradiol must inhibit secretion of LH before an LH surge can occur. It is concluded that incompetence for oestradiol-induced LH surges in long-term ovarian secretion-deprived gilts and in male pigs is due to the failure of oestradiol to promote a sufficient increase in the release of GnRH.  相似文献   

19.
The concentration of FSH and LH in peripheral plasma was studied in sheep from 8 h before to 17.5 h after injection (i.v.) with antisera to the steroids androstenedione, oestradiol, oestrone and testosterone. The fitted mean concentration of LH increases after all treatments and the increase was associated with a higher frequency of LH pulses. The greater concentration was evident for all groups by the period 3.5-6.5 h after injection, but by the end of the sampling period the concentration had returned to or towards the values in the controls. For FSH, significant change was limited to those animals given anti-oestrogen sera but it was more rapid than for LH, both groups receiving anti-oestrogen sera showing an increase during the period 0.5-3.0 h after injection. The ovulation rate was increased by treatment and an effect close to 0.75 corpora lutea per ewe was maintained by treatment in subsequent oestrous cycles. This declined to 0.25 corpora lutea after two oestrous cycles without treatment.  相似文献   

20.
Our previous work indicates that ewe breed differences in fertility following cervical AI with frozen-thawed semen are due to failure of normal sperm transport and/or early embryo development. Here we examined differences in hormone concentrations about the time of ovulation among more (Finnish Landrace and Belclare) and less (Suffolk and Texel) fertile ewes after AI with frozen thawed semen. In Experiment 1, oestradiol concentrations were measured in samples collected frequently from 12h before to 18h after the LH surge and progesterone was measured in samples collected from 9 to 27h after the LH surge in Suffolk (n=24), Texel (n=20) and Finnish Landrace (n=27) ewes. In Experiment 2, oestradiol concentrations were measured in samples collected frequently from 24h before to 6h after the LH surge and progesterone was measured in samples collected from 6h to 6 days after the LH surge in Suffolk (n=35) and Belclare (n=30) ewes. In Experiment 1, there was an effect of breed, time and their interaction (P<0.001) on oestradiol concentrations between -12 and +6h but only breed differences at +12 and +18h (P<0.01). Progesterone concentrations increased over time (P<0.001) and the rate of increase was significantly greater in Finnish Landrace than in the other two breeds. In Experiment 2, oestradiol concentrations were unaffected by breed. There was an interaction between breed and time with the rate of increase of progesterone being greater in Belclare than Suffolk ewes (P<0.001). In conclusion, differences in hormone concentrations in the periovulatory period are not consistent with ewe breed differences in fertility; however, we have showed that progesterone concentrations rise earlier in the more prolific breeds and suggest that this may explain reported ewe breed differences in embryo development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号