首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human glandular kallikrein 2 (hK2) is a serine protease expressed by the prostate gland with 80% identity in primary structure to prostate-specific antigen (PSA). Recently, hK2 was shown to activate the zymogen form of PSA (proPSA) in vitro and is likely to be the physiological activator of PSA in the prostate. hK2 is also able to activate urokinase and effectively cleave fibronectin. We studied the substrate specificity of hK2 and regulation of its activity by zinc and extracellular protease inhibitors present in the prostate and seminal plasma. The enzymatic activity and substrate specificity was studied by determining hK2 cleavage sites in the major gel proteins in semen, semenogelin I and II, and by measuring hydrolysis of various tripeptide aminomethylcoumarin substrates. HK2 cleaves substrates C-terminal of single or double arginines. Basic amino acids were also occasionally found at several other positions N-terminal of the cleavage site. Therefore, the substrate specificity of hK2 fits in well with that of a processor of protein precursors. Possible regulation mechanisms were studied by testing the ability of Zn2+ and different protease inhibitors to inhibit hK2 by kinetic measurements. Inhibitory constants were determined for the most effective inhibitors PCI and Zn2+. The high affinity of PCI for hK2 (kass = 2.0 x 10(5) M-1 x s-1) and the high concentrations of PCI (4 microM) and hK2 (0.2 microM) in seminal plasma make hK2 a very likely physiological target protease for PCI. hK2 is inhibited by Zn2+ at micromolar concentrations well below the 9 mM zinc concentration found in the prostate. The enzymatic activity of hK2 is likely to be reversibly regulated by Zn2+ in prostatic fluid. This regulation may be impaired in CAP and advanced metastatic cancer resulting in lack of control of the hK2 activity and a need for other means of control.  相似文献   

2.
The human KLK14 gene is one of the newly identified serine protease genes belonging to the human kallikrein family, which contains 15 members. KLK14 , like all other members of the human kallikrein family, is predicted to encode for a secreted serine protease already found in various biological fluids. This new kallikrein is mainly expressed in prostate and endocrine tissues, but its function is still unknown. Recent studies have demonstrated that KLK14 gene expression is up-regulated in prostate and breast cancer tissues, and that higher expression levels correlate with more aggressive tumors. In this work, we used phage-display substrate technology to study the substrate specificity of hK14. A phage-displayed random pentapeptide library with exhaustive diversity was screened with purified recombinant hK14. Highly specific and sensitive substrates were selected from the library. We show that hK14 has dual activity, trypsin- and chymotrypsin-like, with a preference for cleavage after arginine residues. A SwissProt database search with selected sequences identified six potential human protein substrates for hK14. Two of them, laminin alpha-5 and collagen IV, which are major components of the extracellular matrix, have been demonstrated to be hydrolyzed efficiently by hK14.  相似文献   

3.
Human tissue kallikreins (hKs) form a family of 15 closely related (chymo)trypsin-like serine proteinases. These tissue kallikreins are expressed in a wide range of tissues including the central nervous system, the salivary gland, and endocrine-regulated tissues, such as prostate, breast, or testis, and may have diverse physiological functions. For several tissue kallikreins, a clear correlation has been established between expression and different types of cancer. For example, the prostate-specific antigen (PSA or hK3) serves as tumor marker and is used to monitor therapy response. Using a novel strategy, we have cloned, expressed in Escherichia coli or in insect cells, refolded, activated, and purified the seven human tissue kallikreins hK3/PSA, hK4, hK5, hK6, hK7, hK10, and hK11. Moreover, we have determined their extended substrate specificity for the nonprime side using a positional scanning combinatorial library of tetrapeptide substrates. hK3/PSA and hK7 exhibited a chymotrypsin-like specificity preferring large hydrophobic or polar residues at the P1 position. In contrast, hK4, hK5, and less stringent hK6 displayed a trypsin-like specificity with strong preference for P1-Arg, whereas hK10 and hK11 showed an ambivalent specificity, accepting both basic and large aliphatic P1 residues. The extended substrate specificity profiles are in good agreement with known substrate cleavage sites but also in accord with experimentally solved (hK4, hK6, and hK7) or modeled structures. The specificity profiles may lead to a better understanding of human tissue kallikrein functions and assist in identifying their physiological protein substrates as well as in designing more selective inhibitors.  相似文献   

4.
Human kallikrein hK3 (prostate-specific antigen) is a chymotrypsin-like serine protease which is widely used in the diagnosis of prostate cancer. Assays of the enzymatic activity of hK3 in extracellular fluids have been limited by a lack of sensitive synthetic substrates. This report describes the design of a series of internally quenched fluorescent peptides containing an amino acid sequence based on preferential hK3 cleavage sites in semenogelins. Those were identified by 2-D gel electrophoresis analysis and N-terminal sequencing of semenogelin fragments generated by ex vivo proteolysis in freshly ejaculated semen. These peptides were cleaved by hK3 at the C-terminal of certain tyrosyl or glutaminyl residues with k(cat)/K(m) values of 15000-60000 M(-1) s(-1). The substrate Abz-SSIYSQTEEQ-EDDnp was cleaved at the Tyr-Ser bond with a specificity constant k(cat)/K(m) of 60000 M(-1) s(-1), making it the best substrate for hK3 described to date.  相似文献   

5.
Human kallikrein 2 (hK2) is a serine protease produced by the secretory epithelial cells in the prostate. Because hK2 activates several factors participating in proteolytic cascades that may mediate metastasis of prostate cancer, modulation of the activity of hK2 is a potential way of preventing tumor growth and metastasis. Furthermore, specific ligands for hK2 are potentially useful for targeting and imaging of prostate cancer and for assay development. We have used enzymatically active recombinant hK2 captured by a monoclonal antibody exposing the active site of the enzyme to screen phage display peptide libraries. Using libraries expressing 10 or 11 amino acids long linear peptides, we identified six different peptides binding to hK2. Three of these were shown to be specific and efficient inhibitors of the enzymatic activity of hK2 toward a peptide substrate. Furthermore, the peptides inhibited the activation of the proform of prostate-specific antigen by hK2. Amino acid substitution analyses revealed that motifs of six amino acids were required for the inhibitory activity. These peptides are potentially useful for treatment and targeting of prostate cancer.  相似文献   

6.
Human kallikrein 4 (hK4) is a member of the expanded family of human kallikreins, a group of 15 secreted proteases. While this protein has been associated with ovarian and prostate cancer prognosis, only limited functional information exists. Therefore, we have undertaken an investigation of its enzymatic properties regarding substrate preference, degradation of extracellular matrix proteins, and its inhibition by various inhibitors. We successfully expressed and purified active recombinant hK4 from supernatants of the Pichia pastoris expression system. This enzyme seems to cleave more efficiently after Arg compared to Lys at the P1 position and exhibits modest specificity for amino acids at positions P2 and P3. hK4 forms complexes with alpha1-antitrypsin, alpha2-antiplasmin and alpha2-macroglobulin. The protease mediates limited degradation of extracellular matrix proteins such as collagen I and IV, and more efficient degradation of the alpha-chain of fibrinogen. The cleavage of extracellular matrix proteins by hK4 suggests that this enzyme may play a role in tissue remodeling and cancer metastasis.  相似文献   

7.
Human kallikrein 8 (hK8), whose gene was originally cloned as the human ortholog of a mouse brain protease, is known to be associated with diseases such as ovarian cancer and Alzheimer's disease. Recombinant human pro-kallikrein 8 was activated with lysyl endopeptidase-conjugated beads. Amino-terminal sequencing of the activated enzyme demonstrated the cleavage of a 9-aa propeptide from the pro-enzyme. The substrate specificity of activated hK8 was characterized using synthetic fluorescent substrates. hK8 showed trypsin-like specificity, as predicted from sequence analysis and enzymatic characterization of the mouse ortholog. All synthetic substrates tested containing either arginine or lysine at P1 position were cleaved by hK8. The highest kcat/Km value of 20x10(3)M-1 s-1 was observed with Boc-Val-Pro-Arg-7-amido-4-methylcoumarin. The activity of hK8 was inhibited by antipain, chymostatin, and leupeptin. The concentration for 50% inhibition by the best inhibitor, antipain, was 0.46 microM. The effect of different metal ions on the enzyme activity was analyzed. Whereas Na+ had no effect on hK8 activity, Ni2+ and Zn2+ decreased the activity and Ca2+, Mg2+, and K+ had a stimulatory effect. Ca2+ was the best activator, with an optimal concentration of approximately 10 microM.  相似文献   

8.
Human kallikrein 6 (hK6) is a trypsin-like serine protease, member of the human kallikrein gene family. Studies suggested a potential involvement of hK6 in the development and progression of Alzheimer's disease. The serum levels of hK6 might be used as a biomarker for ovarian cancer. To gain insights into the physiological role of this enzyme, we sought to determine its substrate specificity and its interactions with various inhibitors. We produced the proform of hK6 and showed that this enzyme was able to autoactivate, as well as proteolyse itself, leading to inactivation. Kinetic studies indicated that hK6 cleaved with much higher efficiency after Arg than Lys and with a preference for Ser or Pro in the P2 position. The efficient degradation of fibrinogen and collagen types I and IV by hK6 indicated that this kallikrein might play a role in tissue remodeling and/or tumor invasion and metastasis. We also demonstrated proteolysis of amyloid precursor protein by hK6 and determined the cleavage sites at the N-terminal end of the protein. Inhibition of hK6 was achieved via binding to different serpins, among which antithrombin III was the most efficient.  相似文献   

9.
The reactive site loop of serpins undoubtedly defines in part their ability to inhibit a particular enzyme. Exchanges in the reactive loop of serpins might reassign the targets and modify the serpin-protease interaction kinetics. Based on this concept, we have developed a procedure to change the specificity of known serpins. First, reactive loops are very good substrates for the target enzymes. Therefore, we have used the phage-display technology to select from a pentapeptide phage library the best substrates for the human prostate kallikrein hK2 [Cloutier, S.M., Chagas, J.R., Mach, J.P., Gygi, C.M., Leisinger, H.J. & Deperthes, D. (2002) Eur. J. Biochem. 269, 2747-2754]. Selected substrates were then transplanted into the reactive site loop of alpha1-antichymotrypsin to generate new variants of this serpin, able to inhibit the serine protease. Thus, we have developed some highly specific alpha1-antichymotrypsin variants toward human kallikrein 2 which also show high reactivity. These inhibitors might be useful to help elucidate the importance of hK2 in prostate cancer progression.  相似文献   

10.
Human kallikrein 14 (KLK14) is a member of the human kallikrein gene family of serine proteases, and its protein, hK14, has recently been suggested to serve as a new ovarian and breast cancer marker. To gain insights into hK14's physiological functions, the active recombinant enzyme was obtained in an enzymatically pure state for biochemical and enzymatic characterizations. We studied its substrate specificity and behavior to various protease inhibitors, and identified candidate physiological substrates. hK14 had trypsin-like activity with a strong preference for Arg over Lys in the P1 position, and its activity was inhibited by typical serine protease inhibitors. The protease degraded casein, fibronectin, gelatin, collagen type I, collagen type IV, fibrinogen, and high-molecular-weight kininogen. Furthermore, it rapidly hydrolyzed insulin-like growth factor binding protein-3 (IGFBP-3). These findings suggest that hK14 may be implicated in tumor progression in ovarian carcinoma.  相似文献   

11.
Human kallikrein 6 (protease M/zyme/neurosin) is a serine protease that has been suggested to be a serum biomarker for ovarian cancer and may also be involved in pathologies of the CNS. The precursor form of human kallikrein 6 (pro-hK6) was overexpressed in Pichia pastoris and found to be autoprocessed to an active but unstable mature enzyme that subsequently yielded the inactive, self-cleavage product, hK6 (D81-K244). Site-directed mutagenesis was used to investigate the basis for the intrinsic catalytic activity and the activation mechanism of pro-hK6. A single substitution R80 --> Q stabilized the activity of the mature enzyme, while substitution of the active site serine (S197 --> A) resulted in complete loss of hK6 proteolytic activity and facilitated protein production. Our data suggest that the enzymatic activity of hK6 is regulated by an autoactivation/autoinactivation mechanism. Mature hK6 displayed a trypsin-like activity against synthetic substrates and human plasminogen was identified as a putative physiological substrate for hK6, as specific cleavage at the plasminogen internal bond S460-V461 resulted in the generation of angiostatin, an endogenous inhibitor of angiogenesis and metastatic growth.  相似文献   

12.
Human kallikrein 6 (hK6) is abundantly expressed in the central nervous system and is implicated in demyelinating disease. This study provided biochemical data about the substrate specificity and activation of hK6 by glycosaminoglycans and by kosmotropic salts, which followed the Hofmeister series. The screening of fluorescence resonance energy transfer (FRET) peptide families derived from Abz-KLRSSKQ-EDDnp resulted in the finding that Abz-AFRFSQ-EDDnp (where Abz is ortho-aminobenzoic acid and EDDnp is N-[2,4-dinitrophenyl]ethylenediamine)) is the best synthetic substrate described so far for hK6 (kcat/Km 38,667 s(-1) mm(-1)). It is noteworthy that the AFRFS sequence was found as a motif in the amino-terminal domain of seven human ionotropic glutamate receptor subunits. We also examined the hK6 hydrolytic activity on FRET peptides derived from human myelin basic protein, precursor of the Abeta amyloid peptide, reactive center loop of alpha1-antichymotrypsin, plasminogen, and maturation and inactivation cleavage sites of hK6, which were described earlier as natural substrates for hK6. The best substrates were derived from myelin basic protein. The hK6 maturation cleavage site was poorly hydrolyzed, and no evidence was found to support a two-step self-activation process reported previously. Finally, we assayed FRET peptides derived from sequences that span the cleavage sites for activation of protease-activated receptors (PAR) 1-4, and only the substrate with the PAR 2 sequence was hydrolyzed. These results further supported the hypothesis that hK6 expressed in the central nervous system is involved in normal myelin turnover/demyelination processes, but it is unlikely to self-activate. This report also suggested the possible modulation of ionotropic glutamate receptors and activation of PAR 2 by hK6.  相似文献   

13.
The reactive center loop (RCL) of serpins plays an essential role in the inhibition mechanism acting as a substrate for their target proteases. Changes within the RCL sequence modulate the specificity and reactivity of the serpin molecule. Recently, we reported the construction of alpha1-antichymotrypsin (ACT) variants with high specificity towards human kallikrein 2 (hK2) [Cloutier SM, Kündig C, Felber LM, Fattah OM, Chagas JR, Gygi CM, Jichlinski P, Leisinger HJ & Deperthes D (2004) Eur J Biochem271, 607-613] by changing amino acids surrounding the scissile bond of the RCL and obtained specific inhibitors towards hK2. Based on this approach, we developed highly specific recombinant inhibitors of human kallikrein 14 (hK14), a protease correlated with increased aggressiveness of prostate and breast cancers. In addition to the RCL permutation with hK14 phage display-selected substrates E8 (LQRAI) and G9 (TVDYA) [Felber LM, Borgo?o CA, Cloutier SM, Kündig C, Kishi T, Chagas JR, Jichlinski P, Gygi CM, Leisinger HJ, Diamandis EP & Deperthes D (2005) Biol Chem386, 291-298], we studied the importance of the scaffold, serpins alpha1-antitrypsin (AAT) or ACT, to confer inhibitory specificity. All four resulting serpin variants ACT(E8), ACT(G9), AAT(E8) and AAT(G9) showed hK14 inhibitory activity and were able to form covalent complex with hK14. ACT inhibitors formed more stable complexes with hK14 than AAT variants. Whereas E8-based inhibitors demonstrated a rather relaxed specificity reacting with various proteases with trypsin-like activity including several human kallikreins, the two serpins variants containing the G9 sequence showed a very high selectivity for hK14. Such specific inhibitors might prove useful to elucidate the biological role of hK14 and/or its implication in cancer.  相似文献   

14.
人体激肽释放酶2(human kallikrein 2,hK2)是一种主要在前列腺中表达的丝氨酸蛋白酶,近年作为前列腺癌的血清标记物受到广泛关注.随着对hK2结构特征、组织表达、生物学活性和调节,及其与前列腺癌病理过程的关系的研究更一步深入,hK2在前列腺癌诊断、病理分期及治疗中的潜在应用价值将越加瞩目.  相似文献   

15.
Human tissue kallikreins (hKs) are a family of fifteen serine proteases. Several lines of evidence suggest that hKs participate in proteolytic cascade pathways. Human kallikrein 5 (hK5) has trypsin-like activity, is able to self-activate, and is co-expressed in various tissues with other hKs. In this study, we examined the ability of hK5 to activate other hKs. By using synthetic heptapeptides that encompass the activation site of each kallikrein and recombinant pro-hKs, we demonstrated that hK5 is able to activate pro-hK2 and pro-hK3. We then showed that, following their activation, hK5 can internally cleave and deactivate hK2 and hK3. Given the predominant expression of hK2 and hK3 in the prostate, we examined the pathophysiological role of hK5 in this tissue. We studied the regulation of hK5 activity by cations (Zn2+, Ca2+, Mg2+, Na2+, and K+) and citrate and showed that Zn can efficiently inhibit hK5 activity at levels well below its normal concentration in the prostate. We also show that hK5 can degrade semenogelins I and II, the major components of the seminal clot. Semenogelins can reverse the inhibition of hK5 by Zn2+, providing a novel regulatory mechanism of its serine protease activity. hK5 is also able to internally cleave insulin-like growth factor-binding proteins 1, 2, 3, 4, and 5, but not 6, suggesting that it might be involved in prostate cancer progression through growth factor regulation. Our results uncover a kallikrein proteolytic cascade pathway in the prostate that participates in seminal clot liquefaction and probably in prostate cancer progression.  相似文献   

16.
Human glandular kallikrein 2 (hK2) is a serine protease expressed mainly by the prostate gland with 80% identity in primary structure to prostate specific antigen (PSA). hK2 has proven to be a useful marker of prostate cancer which can be used in combination with PSA to better discriminate between prostate cancer and benign prostate hyperplasia. The studies on hK2 have been hampered by its very low phyciological levels (6 microgram.mL-1), its close similarity to PSA, and the low expression levels obtained using recombinant procedures to produce hK2 (0.7 mg.L-1). We have now generated propeptide mutations of hK2 which can be used to isolate stable, inactive prohK2 mutants. Compared with wild-type hK2, expression of the propeptide hK2 mutants increases the expression levels up to 15-40-fold giving 10-30 mg hK2.L-1. These results indicate that the low expression levels of wild-type hK2 are related to the activation or autoactivation of the wild-type enzyme and the instability of the active protease in cell culture and possibly also in tissue. The purified mutant hK2 may be activated by either enterokinase or factor Xa to generate an enzyme for use in functional studies with the characteristics of the original wild-type protein. Further, the stable inactive mutant hK2 protein may be used for immunizations to generate novel monoclonal antibodies, used as standard material for clinical assays or in crystallization studies where large quantities of protein are required.  相似文献   

17.
Human kallikrein 5 (KLK5) is a member of the human kallikrein gene family of serine proteases. Preliminary results indicate that the protein, hK5, may be a potential serological marker for breast and ovarian cancer. Other studies implicate hK5 with skin desquamation and skin diseases. To gain further insights on hK5 physiological functions, we studied its substrate specificity, the regulation of its activity by various inhibitors, and identified candidate physiological substrates. After producing and purifying recombinant hK5 in yeast, we determined the k(cat)/K(m) ratio of the fluorogenic substrates Gly-Pro-Arg-AMC and Gly-Pro-Lys-AMC, and showed that it has trypsin-like activity with strong preference for Arg over Lys in the P1 position. The serpins alpha(2)-antiplasmin and antithrombin were able to inhibit hK5 with an inhibition constant (k(+2)/K(i)) of 1.0 x 10(-) (2)and 4.2 x 10(-4) m(-1) min(-1), respectively. No inhibition was observed with the serpins alpha(1)-antitrypsin and alpha(1)-antichymotrypsin, although alpha(2)-macroglobulin partially inhibited hK5 at high concentrations. We also demonstrated that hK5 can efficiently digest the extracellular matrix components, collagens type I, II, III, and IV, fibronectin, and laminin. Furthermore, our results suggest that hK5 can potentially release (a) angiostatin 4.5 from plasminogen, (b) "cystatin-like domain 3" from low molecular weight kininogen, and (c) fibrinopeptide B and peptide beta15-42 from the Bbeta chain of fibrinogen. hK5 could also play a role in the regulation of the binding of plasminogen activator inhibitor 1 to vitronectin. Our findings suggest that hK5 may be implicated in tumor progression, particularly in invasion and angiogenesis, and may represent a novel therapeutic target.  相似文献   

18.
Human kallikrein 5 (hK5) is a member of the tissue kallikrein family of serine peptidases. It has trypsin-like substrate specificity, is inhibited by metal ions, and is abundantly expressed in human skin, where it is believed to play a central role in desquamation. To further understand the interaction of hK5 with substrates and metal ions, active recombinant hK5 was crystallized in complex with the tripeptidyl aldehyde inhibitor leupeptin, and structures at 2.3 A resolution were obtained with and without Zn2+. While the overall structure and the specificity of S1 pocket for basic side-chains were similar to that of hK4, a closely related family member, both differed in their interaction with Zn2+. Unlike hK4, the 75-loop of hK5 is not structured to bind a Zn2+. Instead, Zn2+ binds adjacent to the active site, becoming coordinated by the imidazole rings of His99 and His96 not present in hK4. This zinc binding is accompanied by a large shift in the backbone conformation of the 99-loop and by large movements of both His side-chains. Modeling studies show that in the absence of bound leupeptin, Zn2+ is likely further coordinated by the imidazolyl side-chain of the catalytic His57 which can, similar to equivalent His57 imidazole groups in the related rat kallikrein proteinase tonin and in an engineered metal-binding rat trypsin, rotate out of its triad position to provide the third co-ordination site of the bound Zn2+, rendering Zn2+-bound hK5 inactive. In solution, this mode of binding likely occurs in the presence of free and substrate saturated hK5, as kinetic analyses of Zn2+ inhibition indicate a non-competitive mechanism. Supporting the His57 re-orientation, Zn2+ does not fully inhibit hK5 hydrolysis of tripeptidyl substrates containing a P2-His residue. The P2 and His57 imidazole groups would lie next to each other in the enzyme-substrate complex, indicating that incomplete inhibition is due to competition between both imidazole groups for Zn2+. The His96-99-57 triad is thus suggested to be responsible for the Zn2+-mediated inhibition of hK5 catalysis.  相似文献   

19.
Human kallikrein 10, a predictive marker for breast cancer   总被引:3,自引:0,他引:3  
Our laboratory is involved in identifying genes that can be used as early diagnostic or prognostic markers in breast cancer. We previously identified a gene (NES1) that is expressed in normal but not in transformed mammary epithelial cells (MECs). NES1 is located on chromosome 19q13.4 within the kallikrein locus and thus was designated as human kallikrein 10 (hK10), although we have been unable to detect any protease activity. Importantly, hK10 expression is decreased in a majority of breast cancer cell lines. Transfection of hK10 into hK10-negative breast cancer cells reduces the tumorigenicity. Using methylation-specific PCR and subsequent sequencing, we demonstrate a strong correlation between hypermethylation of hK10 and loss of mRNA expression. Further analysis showed that essentially 100% of normal breast specimens had hK10 expression, whereas 46% of ductal carcinoma in situ (DCIS) and the majority of infiltrating ductal carcinoma (IDC) samples lacked the hK10 mRNA. Importantly, hK10-negative DCIS diagnosed at the time of biopsy were subsequently diagnosed as IDC at the time of definitive surgery. It has been shown that hK10 protein expression is regulated by steroids. In addition to breast cancers, hK10 is downregulated in cervical cancer, prostate cancer and acute lymphocytic leukemia, whereas it is upregulated in ovarian cancers. These results point to the paradoxical role of hK10 in human cancers and underscore the importance of further studies of this kallikrein.  相似文献   

20.
A major characteristic of prostate cancer is the elevation of serum levels of prostate-specific antigen (hK3) and hK2, which are tumor markers that correlate with advancing stages of disease. Including hK4, these three kallikrein serine proteases are almost exclusively produced by the prostate. Prostate cancer cells have been recently shown to overexpress protease-activated receptors (PAR), which can be potentially activated by kallikreins and can regulate tumor growth. Here, we show that recombinant hK2 and hK4 activate ERK1/2 signaling of DU-145, PC-3, and LNCaP prostate cancer cells, which express both PAR1 and PAR2. These kallikreins also stimulate the proliferation of DU-145 cells. Pretreatment of hK2 and hK4 with the serine protease inhibitor, aprotinin, blocks the responses in DU-145 cells, and small interfering RNA against PAR1 and PAR2 also inhibits ERK1/2 signaling. To determine which PAR is activated by hK2 and hK4, a cell line that expresses a single PAR, a PAR1 knockout mouse lung fibroblast cell line transfected with PAR1 (KOLF-PAR1) or PAR2 (KOLF-PAR2) was used. hK4 activates both PAR1 and PAR2, whereas hK2 activates PAR2. hK4 generates more phosphorylated ERK1/2 than hK2. These data indicate that prostatic kallikreins (hK2 and hK4) directly stimulate prostate cancer cell proliferation through PAR1 and/or PAR2 and may be potentially important targets for future drug therapy for prostate cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号