首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Most nerve cells communicate with each other through synaptic transmission at chemical synapses. The regulated exocytosis of neurotransmitters, hormones, and peptides occurs at specialized membrane areas through Ca2+-triggered fusion of secretory vesicles with the plasma membrane . Prior to fusion, vesicles are docked at the plasma membrane and must then be rendered fusion-competent through a process called priming. The molecular mechanism underlying this priming process is most likely the formation of the SNARE complex consisting of Syntaxin 1, SNAP-25, and Synaptobrevin 2. Members of the Munc13 protein family consisting of Munc13-1, -2, -3, and -4 were found to be absolutely required for this priming process . In the present study, we identified the minimal Munc13-1 domain that is responsible for its priming activity. Using Munc13-1 deletion constructs in an electrophysiological gain-of-function assay of chromaffin-granule secretion, we show that priming activity is mediated by the C-terminal residues 1100-1735 of Munc13-1, which contains both Munc13-homology domains and the C-terminal C2 domain. Priming by Munc13-1 appears to require its interaction with Syntaxin 1 because point mutants that do not bind Syntaxin 1 do not prime chromaffin granules.  相似文献   

2.
认识Munc13     
汪俊汉  李臣鸿 《生物磁学》2012,(8):1563-1565,1562
Munc13是C.elegans Unc-13和Drosophila Dunc-13在哺乳动物中的同系物,有四种亚型,是SNARE蛋白的调节蛋白之一。Munc13蛋白含有两个结构域:C1和C2结构域,DAG/佛波醇结合到C1结构域上,能增强Munc13-1促进囊泡成熟的能力。在神经递质的胞吐过程中,有许许多多的蛋白参与,其中Munc,Synaptotagmin和Rab等蛋白家族是其重要的调节因子。同时,囊泡的转运和分泌也需要这些功能特殊的蛋白质的参与。全面了解Munc13的结构域与功能及其在分泌中的地位和分泌模式,有助于其在临床医学中的应用,如其在胰岛素释放等分泌调节中起着的重要作用。  相似文献   

3.
Munc13是C.elegans Unc-13和Drosophila Dunc-13在哺乳动物中的同系物,有四种亚型,是SNARE蛋白的调节蛋白之一。Munc13蛋白含有两个结构域:C1和C2结构域,DAG/佛波醇结合到C1结构域上,能增强Munc13-1促进囊泡成熟的能力。在神经递质的胞吐过程中,有许许多多的蛋白参与,其中Munc,Synaptotagmin和Rab等蛋白家族是其重要的调节因子。同时,囊泡的转运和分泌也需要这些功能特殊的蛋白质的参与。全面了解Munc13的结构域与功能及其在分泌中的地位和分泌模式,有助于其在临床医学中的应用,如其在胰岛素释放等分泌调节中起着的重要作用。  相似文献   

4.
5.
Background information. During development, growth cones of outgrowing neurons express proteins involved in vesicular secretion, such as SNARE (soluble N‐ethylmaleimide‐sensitive fusion protein‐attachment protein receptor) proteins, Munc13 and Munc18. Vesicles are known to fuse in growth cones prior to synapse formation, which may contribute to outgrowth. Results. We tested this possibility in dissociated cell cultures and organotypic slice cultures of two release‐deficient mice (Munc18‐1 null and Munc13‐1/2 double null). Both types of release‐deficient neurons have a decreased outgrowth speed and therefore have a smaller total neurite length during early development [DIV1–4 (day in vitro 1–4)]. In addition, more filopodia per growth cone were observed in Munc18‐1 null, but not WT (wild‐type) or Munc13‐1/2 double null neurons. The smaller total neurite length during early development was no longer observed after synaptogenesis (DIV14–23). Conclusion. These data suggest that the inability of vesicle fusion in the growth cone affects outgrowth during the initial phases when outgrowth speed is high, but not during/after synaptogenesis. Overall, the outgrowth speed is probably not rate‐limiting during neuronal network formation, at least in vitro. In addition, Munc18, but not Munc13, regulates growth cone filopodia, potentially via its previously observed effect on filamentous actin.  相似文献   

6.
Binding of the Munc13-1 MUN domain to membrane-anchored SNARE complexes   总被引:3,自引:0,他引:3  
Guan R  Dai H  Rizo J 《Biochemistry》2008,47(6):1474-1481
The core of the membrane fusion machinery that governs neurotransmitter release includes the SNARE proteins syntaxin-1, SNAP-25 and synaptobrevin, which form a tight "SNARE complex", and Munc18-1, which binds to the SNARE complex and to syntaxin-1 folded into a closed conformation. Release is also controlled by specialized proteins such as complexins, which also bind to the SNARE complex, and unc13/Munc13s, which are crucial for synaptic vesicle priming and were proposed to open syntaxin-1, promoting SNARE complex assembly. However, the biochemical basis for unc13/Munc13 function and its relationship to other SNARE interactions are unclear. To address this question, we have analyzed interactions of the MUN domain of Munc13-1, which is key for this priming function, using solution binding assays and cofloatation experiments with SNARE-containing proteoliposomes. Our results indicate that the Munc13-1 MUN domain binds to membrane-anchored SNARE complexes, even though binding is barely detectable in solution. The MUN domain appears to compete with Munc18-1 but not with complexin-1 for SNARE complex binding, although more quantitative assays will be required to verify these conclusions. Moreover, our data also uncover interactions of membrane-anchored syntaxin-1/SNAP-25 heterodimers with the MUN domain, Munc18-1 and complexin-1. The interaction with complexin-1 is surprising, as it was not observed in previous solution studies. Our results emphasize the importance of studying interactions within the neurotransmitter release machinery in a native membrane environment, and suggest that unc13/Munc13s may provide a template to assemble syntaxin-1/SNAP-25 heterodimers, leading to an acceptor complex for synaptobrevin.  相似文献   

7.
Sphingomyelin synthase (SMS) sits at the crossroads of sphingomyelin (SM), ceramide, diacylglycerol (DAG) metabolism. It utilizes ceramide and phosphatidylcholine as substrates to produce SM and DAG, thereby regulating lipid messengers which play a role in cell survival and apoptosis. There are two isoforms of the enzyme, SMS1 and SMS2. Both SMS1 and SMS2 contain two histidines and one aspartic acid which are evolutionary conserved within the lipid phosphate phosphatase superfamily. In this study, we systematically mutated these amino acids using site-directed mutagenesis and found that each point mutation abolished SMS activity without altering cellular distribution. We also explored the domains which are responsible for cellular distribution of both enzymes. Given their role as a potential regulator of diseases, these findings, coupled with homology modeling of SMS1 and SMS2, will be useful for drug development targeting SMS.  相似文献   

8.
C 2 domains are well characterized as Ca 2+/phospholipid-binding modules, but little is known about how they mediate protein–protein interactions. In neurons, a Munc13–1 C 2A-domain/RIM zinc-finger domain (ZF) heterodimer couples synaptic vesicle priming to presynaptic plasticity. We now show that the Munc13–1 C 2A domain homodimerizes, and that homodimerization competes with Munc13–1/RIM heterodimerization. X-ray diffraction studies guided by nuclear magnetic resonance (NMR) experiments reveal the crystal structures of the Munc13–1 C 2A-domain homodimer and the Munc13–1 C 2A-domain/RIM ZF heterodimer at 1.44 Å and 1.78 Å resolution, respectively. The C 2A domain adopts a β-sandwich structure with a four-stranded concave side that mediates homodimerization, leading to the formation of an eight-stranded β-barrel. In contrast, heterodimerization involves the bottom tip of the C 2A-domain β-sandwich and a C-terminal α-helical extension, which wrap around the RIM ZF domain. Our results describe the structural basis for a Munc13–1 homodimer–Munc13–1/RIM heterodimer switch that may be crucial for vesicle priming and presynaptic plasticity, uncovering at the same time an unexpected versatility of C 2 domains as protein–protein interaction modules, and illustrating the power of combining NMR spectroscopy and X-ray crystallography to study protein complexes.  相似文献   

9.
Palfreyman M  Jorgensen EM 《Neuron》2007,54(2):179-180
Protein kinase C has long been thought to mediate DAG signaling at the synapse. Recently PKC has been supplanted by members of the Unc13 family as the predominant effectors of DAG signaling. Thanks to a study by Wierda and colleagues in this issue of Neuron, PKC returns to reclaim part of the kingdom: both pathways must be active to activate presynaptic potentiation.  相似文献   

10.
11.
The large 1285-amino-acid protein toxin from Pasteurella multocida (PMT) is a multifunctional single-chain polypeptide that binds to and enters eukaryotic cells and acts intracellularly to promote G(q) and G(12/13) protein-dependent calcium and mitogenic signal transduction. Previous studies indicated that the intracellular activity domain responsible for PMT action was located within the C-terminal 600-700 amino acids. In this study, we have exogenously expressed a series of N- and C-terminal PMT fragments directly in mammalian cells and have used the dual luciferase reporter system to assay for toxin-mediated activation of calcium-calcineurin-NFAT signaling (NFAT-luciferase) and mitogenic serum response signaling (SRE-luciferase). Using this approach, we have defined the last 180 amino acids, which encompass the C3 domain in the crystal structure, as the minimum domain sufficient to activate both NFAT and SRE signaling pathways.  相似文献   

12.
C 2 domains are well characterized as Ca 2+/phospholipid-binding modules, but little is known about how they mediate protein–protein interactions. In neurons, a Munc13–1 C 2A-domain/RIM zinc-finger domain (ZF) heterodimer couples synaptic vesicle priming to presynaptic plasticity. We now show that the Munc13–1 C 2A domain homodimerizes, and that homodimerization competes with Munc13–1/RIM heterodimerization. X-ray diffraction studies guided by nuclear magnetic resonance (NMR) experiments reveal the crystal structures of the Munc13–1 C 2A-domain homodimer and the Munc13–1 C 2A-domain/RIM ZF heterodimer at 1.44 Å and 1.78 Å resolution, respectively. The C 2A domain adopts a β-sandwich structure with a four-stranded concave side that mediates homodimerization, leading to the formation of an eight-stranded β-barrel. In contrast, heterodimerization involves the bottom tip of the C 2A-domain β-sandwich and a C-terminal α-helical extension, which wrap around the RIM ZF domain. Our results describe the structural basis for a Munc13–1 homodimer–Munc13–1/RIM heterodimer switch that may be crucial for vesicle priming and presynaptic plasticity, uncovering at the same time an unexpected versatility of C 2 domains as protein–protein interaction modules, and illustrating the power of combining NMR spectroscopy and X-ray crystallography to study protein complexes.  相似文献   

13.
Pham T  Kodvawala A  Hui DY 《Biochemistry》2005,44(20):7577-7582
Apolipoprotein E (apoE) is a 34-kDa lipid-associated protein present in plasma and in the central nervous system. Previous studies have demonstrated that apoE has multiple functions, including the ability to transport lipids, regulate cell homeostasis, and inhibit lipid oxidation. The lipid binding domain of apoE has been localized to the carboxyl-terminal domain, whereas a cluster of basic amino acid residues within the N-terminal domain is responsible for its receptor binding activity. This study was undertaken to identify the domain in apoE responsible for its antioxidant activity. Results showed that apoE inhibits Cu(2+)-induced LDL oxidation by delaying conjugated diene formation in a concentration-dependent manner. Reductive methylation of lysine residues or cyclohexanedione modification of arginine residues in apoE abolished its ability to inhibit LDL oxidation. Additional studies showed that a 22-kDa peptide containing the N-terminal domain of apoE3 was more effective than a similar peptide with the apoE4 sequence in inhibiting Cu(2+)-induced LDL oxidation. In contrast, the 10-kDa peptide that contains the C-terminal domain of apoE was ineffective. Inhibition of Cu(2+)-induced LDL oxidation can also be accomplished with a peptide containing either a single sequence or a tandem repeat sequence of the receptor binding domain (residues 141-155) of apoE. Taken together, these results localized the antioxidant domain of apoE to its receptor binding domain and the basic amino acids in this domain are important for its antioxidant activity.  相似文献   

14.
Rab3A is a small G-protein of the Rab family that is involved in the late steps of exocytosis. Here, we studied the role of Rab3A and its relationship with Munc13-1 and Munc18-1 during vesicle priming. Phorbol 12-myristate 13-acetate (PMA) is known to enhance the percentage of fusion-competent vesicles and this is mediated by protein kinase C (PKC)-independent Munc13-1 activation and PKC-dependent dissociation of Munc18-1 from syntaxin 1a. Our results show that the effects of PMA varied in cells overexpressing Rab3A or mutants of Rab3A and in cells with Rab3A knockdown. When Munc13-1 was overexpressed in Rab3A knockdown cells, secretion was completely inhibited. In cells overexpressing a Rab-interacting molecule (RIM)-binding deficient Munc13-1 mutant, 128-Munc13-1, the effects of Rab3A on PMA-induced secretion was abolished. The effect of PMA, which disappeared in cells overexpressing GTP-Rab3A (Q81L), could be reversed by co-expressing Munc18-1 but not its mutant R39C, which is unable to bind to syntaxin 1a. In cells overexpressing Munc18-1, manipulation of Rab3A activity had no effect on secretion. Finally, Munc18-1 enhanced the dissociation of Rab3A, and such enhancement correlated with exocytosis. In summary, our results support the hypothesis that the Rab3A cycle is coupled with the activation of Munc13-1 via RIM, which accounts for the regulation of secretion by Rab3A. Munc18-1 acts downstream of Munc13-1/RIM/Rab3A and interacts with syntaxin 1a allowing vesicle priming. Furthermore, Munc18-1 promotes Rab3A dissociation from vesicles, which then results in fusion.  相似文献   

15.
Among the neuronal binding partners of calmodulin (CaM) are Munc13 proteins as essential presynaptic regulators that play a key role in synaptic vesicle priming and are crucial for presynaptic short-term plasticity. Recent NMR structural investigations of a CaM/Munc13-1 peptide complex have revealed an extended structure, which contrasts the compact structures of most classical CaM/target complexes. This unusual binding mode is thought to be related to the presence of an additional hydrophobic anchor residue at position 26 of the CaM binding motif of Munc13-1, resulting in a novel 1-5-8-26 motif. Here, we addressed the question whether the 1-5-8-26 CaM binding motif is a Munc13-related feature or whether it can be induced in other CaM targets by altering the motif''s core residues. For this purpose, we chose skeletal muscle myosin light chain kinase (skMLCK) with a classical 1-5-8-14 CaM binding motif and constructed three skMLCK peptide variants mimicking Munc13-1, in which the hydrophobic anchor amino acid at position 14 was moved to position 26. Chemical cross-linking between CaM and skMLCK peptide variants combined with high-resolution mass spectrometry yielded insights into the peptides'' binding modes. This structural comparison together with complementary binding data from surface plasmon resonance experiments revealed that skMLCK variants with an artificial 1-5-8-26 motif cannot mimic CaM binding of Munc13-1. Apparently, additional features apart from the spacing of the hydrophobic anchor residues are required to define the functional 1-5-8-26 motif of Munc13-1. We conclude that Munc13 proteins display a unique CaM binding behavior to fulfill their role as efficient presynaptic calcium sensors over broad range of Ca2+ concentrations.  相似文献   

16.
Regulation of insulin exocytosis by Munc13-1   总被引:8,自引:0,他引:8  
The slower kinetics of insulin release from pancreatic islet beta cells, as compared with other regulated secretory processes such as chromaffin granule secretion, can in part be explained by the small number of the insulin granules that are docked to the plasma membrane and readily releasable. In type-2 diabetes, the kinetics of insulin secretion become grossly distorted, and, to therapeutically correct this, it is imperative to elucidate the mechanisms that regulate priming and secretion of insulin secretory granules. Munc13-1, a synaptic protein that regulates SNARE complex assembly, is the major protein determining the priming of synaptic vesicles. Here, we demonstrate the presence of Munc13-1 in human, rat, and mouse pancreatic islet beta cells. Expression of Munc13-1, along with its cognate partners, syntaxin 1a and Munc18a, is reduced in the pancreatic islets of type-2 diabetes non-obese Goto-Kakizaki and obese Zucker fa/fa rats. In insulinoma cells, overexpressed Munc13-1-enhanced green fluorescent protein is translocated to the plasma membrane in a temperature-dependent manner. This, in turn, greatly amplifies insulin exocytosis as determined by patch clamp capacitance measurements and radioimmunoassay of the insulin released. The potentiation of exocytosis by Munc13-1 is dependent on endogenously produced diacylglycerol acting on the overexpressed Munc13-1 because it is blocked by a phospholipase C inhibitor (U73122) and abrogated when the diacylglycerol binding-deficient Munc13-1H567K mutant is expressed instead of the wild type protein. Our data demonstrate that Munc13-mediated vesicle priming is not restricted to neurotransmitter release but is also functional in insulin secretion, where it is subject to regulation by the diacylglycerol second messenger pathway. In view of our findings, Munc13-1 is a potential drug target for therapeutic optimization of insulin secretion in diabetes.  相似文献   

17.
Exocytosis is a highly regulated, multistage process consisting of multiple functionally definable stages, including recruitment, targeting, tethering, priming, and docking of secretory vesicles with the plasma membrane, followed by calcium-triggered membrane fusion. The acrosome reaction of spermatozoa is a complex, calcium-dependent regulated exocytosis. Fusion at multiple sites between the outer acrosomal membrane and the cell membrane causes the release of the acrosomal contents and the loss of the membranes surrounding the acrosome. Not much is known about the molecules that mediate membrane docking in this particular fusion model. In neurons, the formation of the ternary RIM/Munc13/Rab3A complex has been suggested as a critical component of synaptic vesicles docking. Previously, we demonstrated that Rab3A localizes to the acrosomal region in human sperm, stimulates acrosomal exocytosis, and participates in an early stage during membrane fusion. Here, we report that RIM and Munc13 are also present in human sperm and localize to the acrosomal region. Like Rab3A, RIM and Munc13 participate in a prefusion step before the efflux of intra-acrosomal calcium. By means of a functional assay using antibodies and recombinant proteins, we show that RIM, Munc13 and Rab3A interplay during acrosomal exocytosis. Finally, we report by electron transmission microscopy that sequestering RIM and Rab3A alters the docking of the acrosomal membrane to the plasma membrane during calcium-activated acrosomal exocytosis. Our results suggest that the RIM/Munc13/Rab3 A complex participates in acrosomal exocytosis and that RIM and Rab3A have central roles in membrane docking.  相似文献   

18.
Munc13-4 reconstitutes calcium-dependent SNARE-mediated membrane fusion   总被引:1,自引:0,他引:1  
Munc13-4 is a widely expressed member of the CAPS/Munc13 protein family proposed to function in priming secretory granules for exocytosis. Munc13-4 contains N- and C-terminal C2 domains (C2A and C2B) predicted to bind Ca(2+), but Ca(2+)-dependent regulation of Munc13-4 activity has not been described. The C2 domains bracket a predicted SNARE-binding domain, but whether Munc13-4 interacts with SNARE proteins is unknown. We report that Munc13-4 bound Ca(2+) and restored Ca(2+)-dependent granule exocytosis to permeable cells (platelets, mast, and neuroendocrine cells) dependent on putative Ca(2+)-binding residues in C2A and C2B. Munc13-4 exhibited Ca(2+)-stimulated SNARE interactions dependent on C2A and Ca(2+)-dependent membrane binding dependent on C2B. In an apparent coupling of membrane and SNARE binding, Munc13-4 stimulated SNARE-dependent liposome fusion dependent on putative Ca(2+)-binding residues in both C2A and C2B domains. Munc13-4 is the first priming factor shown to promote Ca(2+)-dependent SNARE complex formation and SNARE-mediated liposome fusion. These properties of Munc13-4 suggest its function as a Ca(2+) sensor at rate-limiting priming steps in granule exocytosis.  相似文献   

19.
The neutrophil plays a central role in the innate host immune defense. Regulated exocytosis of its granules and release of antimicrobial and cytotoxic substances are key events to limit the spread of pathogens. However, the molecular mechanisms that control exocytosis of neutrophil granules are ill-defined. Recently, it was shown that Munc13-4 is essential for the priming of granules in several hematopoietic cells. In this study, we show that Munc13-4 is expressed in human neutrophils, and that its expression is increased during granulocytic differentiation of HL-60 and PLB-985 cells. Cell fractionation analysis reveals that Munc13-4 is mainly cytosolic and is recruited rapidly to membranes following stimulation with fMLF (N-formyl-methionyl-leucyl-phenylalanine). Moreover, a pool of Munc13-4 associated with mobilizable secondary and tertiary granules is relocalized to the plasma membrane after stimulation with fMLF. The fMLF-induced translocation of Munc13-4 is strictly dependent on calcium in neutrophils. C2 domains of Munc13-4 are essential for binding to phospholipid vesicles in a Ca(2+)-independent manner. Finally, down-regulation of Munc13-4 using small interfering RNA decreases exocytosis of tertiary granules in PLB-985 cells, whereas overexpression of Munc13-4 enhances secretion of MMP-9 (matrix metalloproteinase-9) from tertiary granules. Our findings suggest a role for Munc13-4 as a component of the secretory machinery in neutrophils.  相似文献   

20.
Sensing of and response to transient increases in the residual presynaptic Ca2+ levels are important adaptive mechanisms that define the short-term plasticity characteristics of neurons. Due to their essential function in synaptic vesicle priming and in the modulation of synaptic strength, Munc13 proteins have emerged as key regulators of these adaptive mechanisms. Indeed, Munc13-1 and ubMunc13-2 contain a conserved calmodulin (CaM) binding site and the Ca2+ -dependent interaction of these Munc13 isoforms with CaM constitutes a molecular mechanism that transduces residual Ca2+ signaling to the synaptic exocytotic machinery. Here, we used Munc13-derived model peptides in photoaffinity labeling (PAL) experiments to demonstrate the stoichiometric and Ca2+ -dependent CaM binding of the other members of the Munc13 family, bMunc13-2 and Munc13-3, via structurally distinct non-conserved binding sites. A PAL-based Ca2+ titration assay revealed that all Munc13 isoforms can form a complex with CaM already at low Ca2+ concentrations just above resting levels, underscoring the Ca2+ sensor/effector function of this interaction in short-term synaptic plasticity phenomena.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号