首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Plants grown at limited P supply can increase the activity of phosphatases in roots to hydrolyse organic-P compounds in the soil thus improving plant P acquisition, but little information is available about the role of these enzymes for internal plant metabolism at limited-P conditions. This work intended to measure the activities of acid phosphatases and phytases in nodules of common bean (Phaseolus vulgaris) genotypes at different levels of P supply. The experiment was carried out in a 5?×?5 factorial design with four replicates, comprising five bean genotypes and five P levels (20, 40, 80, 160 and 320 μmol P plant?1 week?1) in nutrient solution. Root seedlings were inoculated with Rhizobium tropici and plants were grown in 1-l bottles. Nodule samples were detached from 39-day-old plants and enzyme activities were determined in crude extracts. Plants were harvested at the stage of pod setting. Polynomial models fitted to data indicated maximal values at the level of 194 μmol P for shoot mass, at 206 μmol P for nodule mass and at 221 μmol P for shoot N. Whereas shoot mass was 1.7 times lower at 20 than at 160 μmol P, nodule mass was 7.5 times lower. Concentration of P in nodules increased from 40 to 320 μmol P but remained stable between 20 and 40 μmol P, suggesting a minimal threshold concentration of 3 mg P g?1 for nodule growth. Activities of phosphatases and phytases in nodules decreased strongly as P supply was raised from 20 to 80 μmol P, remaining almost stable at higher P levels. Phosphatase activity ranged from 1,154 to 406 nmol min?1 g?1 (nodule fresh mass) from 20 to 80 μmol P respectively, while the phytase activity ranged from 55 to 14 nmol min?1 g?1 from 20 to 80 μmol P. Bean genotypes differed in shoot and nodule mass at the levels of 80 and 160 μmol P, whilst they differed in nodule enzyme activities only at the lowest P level, the relationship between nodule enzyme activities and growth of different bean genotypes was not evident. It is concluded that bean plants at P-deficient conditions increase the activities of phosphatases and phytases in nodules. This may constitute an adaptive mechanism for N2-fixing legumes to tolerate P deficiency, by increasing the utilisation of the scarce P within the nodules.  相似文献   

2.
T. Olsen  M. Habte 《Mycorrhiza》1995,5(6):395-399
The interaction of Cajanus cajan with Rhizobium and vesicular-arbuscular mycorrhizal fungi (VAMF) was investigated in a greenhouse experiment. C. cajan was planted in soil that had been inoculated with Glomus aggregatum or treated with benlate to suppress VAMF activity. Initial soil solution P concentrations of 0.06, 0.2, 0.4, and 0.8 mg l-1 were established to test the interaction at external P levels that ranged from inadequate to nonlimiting for the host plant. At 0.06 and 0.2 mg P l-1, mycorrhizal inoculation significantly increased plant P concentrations as well as nodule numbers and shoot dry weight. Mycorrhizal inoculation also significantly increased nodule dry weight at a soil P concentration of 0.4 mg l-1 but did not significantly influence any of the other variables. The mycorrhizal inoculation effect observed at this soil solution P concentration could not be explained by any of the measures of plant P status. At 0.8 mg P l-1, none of the measured variables were affected significantly by mycorrhizal inoculation. The results indicate that the enhanced nodulation associated with mycorrhizal inoculation at soil P concentrations lower than 0.4 mg l-1 was explainable by mycorrhizal-mediated P uptake. The small but significant increase in nodule mass due to VAMF inoculation at 0.4 mg P l-1 suggests that factors not related to plant P nutrition may be involved. On the other hand, the lack of a VAMF inoculation effect at 0.8 mg P l-1 despite VAMF colonization at a level comparable to that observed at the former P concentration appear to discount this hypothesis. This observation is also supported by the lack of response of plant N status and nodule number to VAMF inoculation at this soil P concentration.Contribution from the Hawaii Institute of Tropical Agriculture and Human Resources Journal Series No.4066  相似文献   

3.
Eucalyptus tereticornis was grown in a green house in a low phosphorus (0.67 ppm Olsen's P) soil (Typic Haplustalf) inoculated with mixed indigenous arbuscular mycorrhizal (AM) fungi. Soil was amended to achieve P levels of 10, 20, 25, 30 and 40 ppm to evaluate the growth response and dependence of E. tereticornis to inoculation with AM fungi. A positive response to mycorrhizal inoculation was evident at the first two levels of soil P, i.e., at 0.67 and 10 ppm but not at the higher levels of soil P. Dry matter yield of inoculated plants beyond 20 ppm soil P was similar or even less compared to their uninoculated counterparts. Inoculated plants produced maximum dry matter (root and shoot) at 10 ppm soil P, whereas uninoculated plants did not produce until the level reached 20 ppm. The percentage root length colonized by AM fungi decreased from 31% to 3% as the concentration of P increased beyond 10 ppm soil P. Higher levels of soil P depressed the AM colonization significantly. Inoculated plants had higher shoot P and N contents compared to their uninoculated counterparts at all levels of soil P. However, at the first two lower levels of soil P, inoculated plants showed significantly higher shoot P and N contents over their respective uninoculated counterparts. The increasing shoot P accumulation beyond 10 ppm did not enhance dry matter yields. Inoculated plants had lower values of phosphorus utilization efficiency (PUE) and nitrogen utilization efficiency (NUE) at all levels of soil P except at the unamended level (0.67 ppm) where the inoculated plants showed higher values of NUE compared to uninoculated control plants. Taking dry matter yield into consideration, Eucalyptus plants were found to be highly dependent on 10 ppm of soil P for maximum dry matter production. Any further amendment of P to soil was not beneficial neither for AM symbiosis nor plant growth.  相似文献   

4.
This study examined whether ‘Risnod2’ and ‘Risnod27’ non-nodulating mutants of pea (Pisum sativum L.) provided with increasing concentrations of nitrate could achieve a growth and nitrogen accumulation comparable to their parental N2-fixing cv. Finale. In the cv. Finale, nodule number, nodule dry mass accumulation, total C2H2-reducing activity of nodulated roots (TAR) and estimated N2 fixation were considerably inhibited at 5.0 and 10.0 mM root medium NO3 concentrations. In contrast a 0.63 mM level stimulated both the nodule dry mass and TAR. The cv. Finale N2-fixing plants grown on 0 to 2.5 mM NO3 levels had higher shoot N concentrations than the Nod mutants, but within the 5.0 to 10.0 mM levels the Nod mutants approached or even overtopped the N concentration of the cv. Finale plants. Compared with a high positive correlation found in the Nod mutants, shoot N concentration in the cv. Finale was negatively correlated with the root medium NO3 concentration. The pattern of nitrogen content in shoot dry mass was very similar to that seen in the shoot dry mass accumulation. The Nod mutants grown on the 5.0 and/or 10.0 mM NO3 level had plant dry mass, shoot nitrogen concentration, shoot nitrogen content, and root/shoot dry mass ratio comparable with those of the nodulating cv. Finale grown on the same nitrate levels.  相似文献   

5.
Two field experiments were established to assess the competitiveness of foreign bradyrhizobia in infecting the promiscuous soybean cultivar TGX 536-02D. Seeds were inoculated with antibiotic mutants of the bradyrhizobia strains before planting after land preparation. Soybean plants were harvested at pre-determined days after planting for estimating nodule number, nodule dry weight, nodule occupancy, shoot dry weight and seed yield. Results show that nodule number and dry weight significantly increased and showed great variability at 84 days after planting (DAP), probably due to differences in the ability of inoculant bradyrhizobia to form nodules with the soybean cultivar TGX 536-02D. Increased shoot dry weight, %N, total N and seed yield were a result of increased nodulation by the effective and competitive inoculant Bradyrhizobium strains. Strain USDA 110 occupied the highest percentage of nodule sites because it was more competitive than the other Bradyrhizobium strains. These results show that there was high potential for increasing growth and seed yield of the promiscuous soybean cultivar TGX 536-02D by inoculation with foreign Bradyrhizobium strains.  相似文献   

6.
The role of lateral root nodules in N2 fixation and the relationships between total shoot N and several traits which influence or control N2 fixation in common bean (Phaseolus vulgaris L.)i.e., acetylene reduction value, specific nodule activity, leghemoglobin concentration, total leghemoglobin and nodule mass, were investigated in field studies. Significant variation among bean lines was observed for all the traits measured. Lines varied for the proportion of total N accumulated up to the R3 growth state, thus measurements of total shoot N near maturity (e.g., R7) provided a better estimate of total N2 fixation than measurements taken at an early growth stage. Nodule mass was correlated with acetylene reduction and total leghemoglobin, and total leghemoglobin was correlated with acetylene reduction value. Total shoot N at R7 was correlated with seasonal means of nodule mass and number, acetylene reduction value and total leghemoglobin. For all traits except total leghemoglobin, values for lateral roots were more highly correlated with total shoot N than were values for either crown roots or the whole root system. Seed yield was most highly correlated with nodule mass of the lateral roots. These results will be useful in devising breeding strategies for improved N2 fixation of the host plant.  相似文献   

7.
Soybean plants cv. Corsoy were grown in greenhouse conditions on sterilized quartz sand. They were inoculated with Bradyrhizobium japonicum, strain 542. The plants were treated with different concentrations of quercetin (ranging from 10 nM to 1M) at regular intervals during the experiment. The experiment was terminated at flower development. The following parameters, important for symbiosis efficiency were determined: shoot, root and nodule weights, nodule number, total leghemoglobin in the nodules,total nitrogen and soluble protein concentrations in shoots and roots, as well as chlorophyll concentration in the leaves.The results obtained partly confirmed the earlier findings that quercetin inhibits nodulation since increasing quercetin concentration decreased the number of nodules. However, at very low concentrations, quercetin stimulated the number of nodules. Quercetin also exerted a stimulating influence on other characteristics of the plant and nodules which did not correlate with nodule number and quantity of N fixed. These are: nodule weight, leghemoglobin concentration, total soluble protein content in shoots and roots as well as shoot and root weight.  相似文献   

8.
The influence of P on N2 fixation and dry matter production of young pea ( Pisum sativum L. cv. Bodil) plants grown in a soil-sand mixture was investigated in growth cabinet experiments. Nodule dry weight, specific C2H2 reduction and P concentration in shoots responded to P addition before any growth response could be observed. The P concentration in nodules responded only slightly to P addition. A supply of P to P-deficient plants increased both the nodule dry weight, specific C2H2 reduction and P concentration in shoots relatively faster than it increased shoot dry weight and P concentration in nodules. Combined N applied to plants when N2 fixation had commenced, increased shoot dry weight only at the highest P levels. This indicates that the smaller plant growth at the low P levels did not result from N deficiency. The reduced nodulation and N2 fixation in P-deficient plants seem to be caused by impaired shoot metabolism and not by a direct effect of P deficiency of the nodules.  相似文献   

9.
To test the hypothesis that high levels of soluble phosphate applied in combination with VAM fungi, to citrus plants, can cause growth depression even in the absence of other limiting factors, and also to test if rock phosphate, under these conditions, may be a satisfactory P source, a greenhouse experiment was conducted using sterilized soil with four levels of phosphate (0, 50, 100 and 200 ppm P) supplied either as soluble P or as rock phosphate. Citrus seedlings were either inoculated with the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus etunicatum or left uninoculated. Six months after the start of the experiment, the plants were harvested and shoot dry weight, P and K uptake, root colonization and the number of spores in 50 cm3 of soil were determined. Significant increases were found in dry matter yields and in P and K contents, due to VAM fungus inoculation, at the zero and 50 ppm soluble P levels and at all rock phosphate levels. At 100 ppm soluble P, the development of VAM plants was equilvalent to that of non-VAM plants, and at 200 ppm, growth was significantly less than that of non-VAM plants. Root colonization and sporulation were reduced at higher P levels. The absolute growth depression of VAM plants at the higher P level was likely due to P toxicity. In addition, high leaf P and K concentrations may have interfered with carbohydrate distribution and utilization in these symbioses. Rock phosphate may be used with VAM citrus to substitute for medium amounts of soluble phosphate.  相似文献   

10.
Nodulated alfalfa (Medicago sativa L. cv. Saranac) plants were grown in hydroponics at P-sufficient and P-deficient supply levels. After 5 weeks of growth, dry matter accumulation, nodulation, total N and P accumulation, as well as 15N2 uptake, were measured. Moreover, the response of nodule O2-uptake to raising external pO2 was determined in an open-flow measurement system and nodule permeability was calculated. Plants in the P-deficient supply treatment had a lower P concentration in all organs. In both treatments the highest P concentration was found in nodules. In the P-deficient supply treatment plants formed less dry matter, had a lower shoot/root ratio, less nodulation, decreased total N accumulation, and lower 15N2 uptake per dry matter nodule. Nodules in the P-deficient treatment were, on average, smaller and had a higher O2 uptake per N2 reduced, coinciding with increased nodule permeability and conductance. Thus increased oxygen uptake appears to be a mechanism to adjust nodule metabolism to P deficiency in indeterminate N2-fixing nodules such as in alfalfa, as has previously been shown for determinate nodule forms.  相似文献   

11.
Open-flow assays of H2 evolution in Ar:O2 (80:20, v/v) by nodulated roots were performed in situ with soybean [Glycine max (L.) Merr.] and alfalfa [Medicago sativa L.) grown in sand with orthophosphate (Pi) nutrition either limiting (low-P) or non-limiting (control) for plant growth. Nodule growth was more limited than shoot growth by P deficiency. Phosphorus concentration was less affected in nodules than in other parts of the low-P plants. During assays, nitrogenase activity declined a few minutes after exposure of the nodulated roots to Ar. The magnitude of this argon-induced decline (Ar-ID) was less in alfalfa than in soybean. In both symbioses the magnitude of the Ar-ID was larger in low-P than control plants. Moreover, the minimum H2 evolution after the Ar-ID, was reached earlier in low-P plants. The Ar-ID was partly reversed by raising the external partial pressure of O2 in the rhizosphere. The magnitude of the Ar-ID in soybean was correlated negatively to nodule and shoot mass per plant, individual nodule mass, H2 evolution in air prior to the assay, and nodule N and P concentrations. Possible reasons, including nodule size and nodule O2 permeability, for the increase in Ar-ID in P-deficient plants are discussed and an interpretation of the P effect on nodule respiration and energetic metabolism is proposed. Received: 17 May 1996 / Accepted: 16 September 1996  相似文献   

12.
Cells of Bradyrhizobium japonicum were grown in media containing either 1.0 mM or 0.5 μM phosphorus. In growth pouch experiments, infection of the primary root of soybean (Glycine max (L.) Merr.) by B. japonicum USDA 31, 110, and 142 was significantly delayed when P-limited cells were applied to the root. In a greenhouse experiment, B. japonicum USDA 31, 110, 122, and 142 grown with sufficient and limiting P were used to inoculate soybeans which were grown with either 5 μM or 1 mM P nutrient solution. P-limited cells of USDA 31 and 110 formed significantly fewer nodules than did P-sufficient cells, but P-limited cells of USDA 122 and 142 formed more nodules than P-sufficient cells. The increase in nodule number by P-limited cells of USDA 142 resulted in significant increases in both nodule mass and shoot total N. In plants grown with 1 mM P, inoculation with P-limited cells of USDA 110 resulted in lower total and specific nitrogenase activities than did inoculation with P-sufficient cells. Nodule numbers, shoot dry weights, and total N and P were all higher in plants grown with 1 mM P, and plants inoculated with USDA 31 grew poorly relative to plants receiving strains USDA 110, 122, and 142. Although the effects of soybean P nutrition were more obvious than those of B. japonicum P nutrition, we feel that it is important to develop an awareness of the behavior of the bacterial symbiont under conditions of nutrient limitation similar to those found in many soils.  相似文献   

13.
《Journal of bryology》2013,35(3):391-400
Abstract

Sphagnum fuscum samples collected from an ombrotrophic bog were grown in a greenhouse at six water levels (0, 5, 10, 15, 25 and 30 cm) below the capitulum level and in four concentrations of CO2 (350, 700, 1000 and 2000 ppm). The cores of S. fuscum were treated for 87 days and length increment was measured by the plastic strip method and by innate time markers. Water content of the shoot, dry mass of the capitulum, dry mass per unit length of stem and production of dry mass were measured at the end of the experiment.

The water content, capitulum dry mass, dry mass per unit length of stem, length increment and dry mass production differed markedly for S. fuscum grown in different water levels. With lower water levels, the water content of the shoot decreased and the dry mass of both the capitulum and unit length of stem increased. The total length increment was highest when the water level was at or near the capitulum level (0–10 cm). No clear trend in dry mass production on an areal basis could be found due to uncoupled responses in length increment and stem dry mass at the experimental water levels.

Neither capitulum dry mass nor dry mass per unit length of stem showed distinct trends in S. fuscum grown at different ambient CO2 concentrations. Some increase in length increment and in dry mass production was detected at CO2 concentrations above 350 ppm, but this effect appeared only at high water levels. It is suggested that the low response in length increment and production to CO2 concentration resulted in part from insufficient moisture for photosynthesis at the lower water levels. Also, the possibility of increased nonstructural production is discussed.  相似文献   

14.
Reddell  Paul  Yun  Yang  Shipton  Warren A. 《Plant and Soil》1997,189(2):213-219
P requirements of Casuarina cunninghamiana seedlings inoculated with Frankia and reliant on symbiotic N2 fixation were compared with those of uninoculated seedlings grown with 4 levels of fertilizer N in a solution culture system.Growth responses to increasing P supply depended on the N treatment that had been imposed. At the two lowest levels of N supply (0 t M and 100 t M) growth was relatively poor and there was no response to increasing P supply above 10 t M and 50 t M P respectively. In contrast, inoculated seedlings and those with higher levels of combined N (500 t M and 1000 t M) had significantly greater shoot dry weights (except at 0.1 t M P), and they responded to increasing P supply to between 50 and 100 t M P. At each level of P supply, the dry weights of seedlings in these 3 N treatments were similar. Nitrogen concentrations in shoots of seedlings provided with fertilizer N decreased with increasing P supply to 50 t M and then remained unchanged. In contrast, N concentrations in shoots of inoculated seedlings increased with increasing P supply to 25 t M P. At the 2 highest levels of P supply, N concentrations in shoots of inoculated plants were significantly higher than those in seedlings provided with fertilizer N. In all N treatments, P concentrations in shoots increased with increasing P supply; concentrations were similar in inoculated seedlings and those with the 2 highest levels of fertilizer N across all levels of P supply.Alleviation of P deficiency in inoculated seedlings increased nodule number, nodule dry weight, N2 fixation g-1 nodule dry weight (nodule 'efficiency'), P concentration in nodules, proportion of total seedling biomass allocated to nodules and average nodule size. However, all these parameters reached their maximum values at levels of P supply at, or below, those required for maximum host-plant growth (50 to 100 t M P).The results indicate that the P requirement for host plant growth per se is similar to, or higher than, that required for symbiotic N2 fixation processes.  相似文献   

15.
White clover (Trifolium repens L.) plants were grown from seedin perlite, inoculated with effective rhizobia and exposed tothe same ‘concentration x days’ of 15N-labellednitrate in four contrasting patterns of doses. Acetylene reductionwas measured at intervals using an open, continuous-flow sytem.Mean dry weight per nodule and rates of acetylene reductionfell rapidly (2–3 d) during periods of exposure to highnitrate concentrations (> 7 mM N) and rose again, equallyrapidly, when nitrate was withdrawn or substantially reduced.The fall in mean dry weight per nodule (50–66 per cent)was almost certainly too large to be accounted for by loss ofsoluble or storage carbohydrate only. No new nodules were formedduring periods of high nitrate availability. When nitrate wassupplied continuously at a moderate concentration (5.7 mM N)nodule numbers stabilised although existing nodules increasedin dry weight by almost four-fold over the 30 d measurementperiod. Treatment had no effect on the percentage nitrogen in planttissues although there were large differences in the proportionsderived from nitrate and N2-fixation. Plants exposed continuouslyor frequently to small doses of nitrate took up more nitrate,and hence relied less heavily on N2-fixation, than those exposedto larger doses less often. Increased reliance on nitrate broughtwith it increased total dry weight and shoot: root ratios. Possiblemechanisms involved in bringing about these differences in nitrogennutrition and growth are discussed. White clover, Trifolium repens, nitrate, N2-fixation, nodule, acetylene reduction, 15N  相似文献   

16.
Ricardo O. Russo 《Plant and Soil》1989,118(1-2):151-155
The objective of this study was to compare the interaction betweenFrankia and vesicular-arbuscular mycorrhizae (VAM) on the growth and N-fixing response ofAlnus acuminata seedlings under three different phosphorus levels.A. acuminata is an actinorhizal tree, commonly associated with pastures on upland areas. Seedlings were grown in sterile vermiculite, and inoculated withFrankia strain ArI3 and/or VAM (asGlomus intra-radices) under three phosphorus levels (10, 50 and 100 ppm). After 120 days differences in growth were observed at the 50 ppm P level between nodulated and non-nodulated plants; either if inoculated withFrankia+VAM or just with VAM. Interaction betweenFrankia and VAM was positive on nodule weight at 50 ppm P level. Differences in acetylene reduction, per gram of fresh nodule, were observed between and within both groups:Frankia inoculated andFrankia+VAM inoculated seedlings. InFrankia inoculated seedlings differences were observed between seedlings receiving 50 ppm P which showed higher nitrogenase activity than seedlings treated with 100 ppm P. Plants inoculated withFrankia andGlomus intra-radices at low P level (10 ppm) showed the highest acetylene reduction. It was 150% higher than the mean of the other treatments within the group, and 87% higher than the general mean of the onlyFrankia inoculated plants.  相似文献   

17.
Effect of salinity on nodule formation by soybean   总被引:12,自引:0,他引:12       下载免费PDF全文
A split-root growth system was employed to evaluate the effect of NaCl on nodule formation by soybean (Glycine max L. Merr. cv Davis). By applying the salinity stress and rhizobial inoculum to only one-half the root system, the effects of salinity on shoot growth were eliminated in the nodulation process. Rhizobium colonization of inoculated root surfaces was not affected by the salt treatments (0.0, 26.6, 53.2, and 79.9 millimolar NaCl). While shoot dry weight remained unaffected by the treatments, total shoot N declined from 1.26 grams N per pot at 0.0 millimolar NaCl to 0.44 grams N per pot at 79.9 millimolar NaCl. The concentration of N in the shoot decreased from 3.75% N (0.0 millimolar NaCl) to 1.26% N at 79.9 millimolar NaCl. The decrease in shoot N was attributed to a sharp reduction in nodule number and dry weight. Nodule number and weight were reduced by approximately 50% at 26.6 millimolar NaCl, and by more than 90% at 53.2 and 79.9 millimolar NaCl. Nodule development, as evidenced by the average weight of a nodule, was not as greatly affected by salt as was nodule number. Total nitrogenase activity (C2H2 reduction) decreased proportionally in relation to nodule number and dry weight. Specific nitrogenase activity, however, was less affected by salinity and was not depressed significantly until 79.9 millimolar NaCl. In a second experiment, isolates of Rhizobium japonicum from nodules formed at 79.9 millimolar NaCl did not increase nodulation of roots under salt stress compared to nodule isolates from normal media (0.0 millimolar NaCl). Salt was applied (53.2 millimolar NaCl) to half root systems at 0, 4, 12, and 96 hours from inoculation in a third experiment. By delaying the application of salt for 12 hours, an increase in nodule number, nodule weight, and shoot N was observed. Nodule formation in the 12- and 96-hour treatments was, however, lower than the control. The early steps in nodule initiation are, therefore, extremely sensitive to even low concentrations of NaCl. The sensitivity is not related to rhizobial survival and is probably due to the salt sensitivity of root infection sites.  相似文献   

18.
Summary The inoculation ofAlnus rubra (red alder) withFrankia sp. can lead to a highly efficient symbiosis. Several factors contribute to the successful establishment of nitrogenfixing nodules: (1) quantity and quality ofFrankia inoculant; (2) time and method of inoculation; (3) nutritional status of the host plant.Frankia isolates were screened for their ability to nodulate and promote plant growth of container-grown red alder. Inoculations were performed on seedlings and seeds. Apparent differences in symbiotic performance could be seen when seeds or seedlings were inoculated. Plants inoculated at planting performed significantly better than those inoculated four weeks later in terms of shoot height, nodule number and shoot dry weight. If inoculation was delayed further, reduction in shoot height, nodule number and shoot dry weight resulted. The effect of fertilizer was also investigated with regard to providing optimal plant growth after inoculation. Plants receiving 1/5 Hoagland's solution minus nitrogen showed maximal plant growth with abundant nodulation. Plants receiving 1/5 Hoagland's solution with nitrogen showed excellent plant growth with significantly reduced nodulation.  相似文献   

19.
The Glycine-Glomus-Rhizobium symbiosis   总被引:3,自引:0,他引:3  
Soybean [ Glycine max , (L.) Merr, cv. Lancer] plants were grown in a sterile rooting medium watered daily with a nutrient solution containing 4, 20, 100, or 500 μM, P. Plants were inoculated with Rhizobium japonicum , strain 61A118 and grown in the presence or absence of the endomycorrhizal fungus Glomus fasciculatus , Gerdemann et Trappe. Plants grown at the highest P regime had six times higher shoot dry weight than those grown in the lowest P regime. Nodulation did not occur at 4 μM P. Nodule dry weight increased 200-fold from the 20 to the 500 μM P treatment. Percentage P in shoots and nodules differed significantly among all treatment levels. Acetylene reduction by nitrogenase increased logarithmically with increasing amounts of P. Hydrogen evolution was not detectable at the 20 μM P level. The relative efficiency of nitrogen fixation increased with increasing P stress. Infection by Glomus fasciculatus , at the 500 μM P level was negligible and did not affect the parameters measured. At all other treatment levels the mycorrhizal plants had significantly higher rates of N2 fixation, plant and nodule mass and P content.  相似文献   

20.
Frey SM  Urban JE 《Plant physiology》1986,81(1):326-328
The number of nodules produced per clover seedling inoculated with Rhizobium trifolii 0403 can be increased almost 2-fold by the addition of penicillin or mecillinam. Two-day-old dutch white clover seedlings grown in 250 milliliter boston round jars containing agar-solidified plant growth medium were inoculated with exponentially growing Rhizobium trifolii 0403 cells. Penicillin or mecillinam (100 micrograms per milliliter) were added immediately or after 24 hours. Following 42 days growth, 10 replicate sets of 5 plants for each treatment were assayed for nodule number, plant dry weight, and Kjeldahl nitrogen. Both antibiotics increased nodule number, plant dry weight, and Kjeldahl nitrogen. Increases in nodule number and dry weight were statistically significant. The range of values in Kjeldahl nitrogen was so extensive as to make the data insignificant at the P < 0.05 level, however nodule number, plant dry weight, and Kjeldahl nitrogen displayed a significant correlation with each other. There were no significant differences in treatment with either antibiotic or with time of treatment. Nodule number increased by about 85%, and plant dry weight and nitrogen increased by about 30%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号