首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The murine tooth development is governed by sequential and reciprocal epithelial-mesenchymal interactions. Multiple signaling molecules are expressed in the developing tooth germ and interact each other to mediate the inductive tissue interactions. Among them are Sonic hedgehog (SHH), Bone Morphogenetic Protein-2 (BMP2) and Bone Morphogenetic Protein-4 (BMP4). We have investigated the interactions between these signaling molecules during early tooth development. We found that the expression of Shh and Bmp2 is downregulated at E12.5 and E13.5 in the dental epithelium of the Msx1 mutant tooth germ where Bmp4 expression is significantly reduced in the dental mesenchyme. Inhibition of BMP4 activity by noggin resulted in repression of Shh and Bmp2 in wild-type dental epithelium. When implanted into the dental mesenchyme of Msx1 mutants, beads soaked with BMP4 protein were able to restore the expression of both Shh and Bmp2 in the Msx1 mutant epithelium. These results demonstrated that mesenchymal BMP4 represents one component of the signal acting on the epithelium to maintain Shh and Bmp2 expression. In contrast, BMP4-soaked beads repressed Shh and Bmp2 expression in the wild-type dental epithelium. TUNEL assay indicated that this suppression of gene expression by exogenous BMP4 was not the result of an increase in programmed cell death in the tooth germ. Ectopic expression of human Bmp4 to the dental mesenchyme driven by the mouse Msx1 promoter restored Shh expression in the Msx1 mutant dental epithelium but repressed Shh in the wild-type tooth germ in vivo. We further demonstrated that this regulation of Shh expression by BMP4 is conserved in the mouse developing limb bud. In addition, Shh expression was unaffected in the developing limb buds of the transgenic mice in which a constitutively active Bmpr-IB is ectopically expressed in the forelimb posterior mesenchyme and throughout the hindlimb mesenchyme, suggesting that the repression of Shh expression by BMP4 may not be mediated by BMP receptor-IB. These results provide evidence for a new function of BMP4. BMP4 can act upstream to Shh by regulating Shh expression in mouse developing tooth germ and limb bud. Taken together, our data provide insight into a new regulatory mechanism for Shh expression, and suggest that this BMP4-mediated pathway in Shh regulation may have a general implication in vertebrate organogenesis.  相似文献   

4.
5.
Pattern formation along the anterior-posterior axis of the vertebrate limb is established upon activation of Sonic Hedgehog (SHH) in the zone of polarizing activity (ZPA). Since many mouse mutants with preaxial polydactyly show ectopic expression of Shh at the anterior margin of the limb buds, it has been thought to be a primary defect caused by these mutations. We show here that the mouse mutation luxate (lx) exhibits dose-dependent reduction in the size of the Fgf8 expression domain in the ectoderm from the initial stage of limb development. This aberration was independent of Fgf10 expression in the limb mesenchyme. Shh was induced in the mesenchyme underlying the posterior end of the Fgf8 expression domain, indicating an anterior shift of Shh expression in lx hindlimb buds. Prior to the ectopic induction of Shh, the expression domains of genes downstream from Shh, namely dHAND, Gli1, Ptc and Gre, which are normally expressed in posterior mesenchyme of limb buds, expanded anteriorly on the lx hindlimb buds. Conversely, the expression domains of anterior mesenchymal markers such as Gli3and Alx4 decreased in size. Thus, ectopic Shh is not a primary defect of the lx mutation. Rather, our results indicate that the lx mutation affects the positioning of the anteroposterior border in developing hindlimb buds.  相似文献   

6.
The aristaless-related homeobox genes Prx1 and Prx2 are required for correct skeletogenesis in many structures. Mice that lack both Prx1 and Prx2 functions display reduction or absence of skeletal elements in the skull, face, limbs and vertebral column. A striking phenotype is found in the lower jaw, which shows loss of midline structures, and the presence of a single, medially located incisor. We investigated development of the mandibular arch of Prx1(-/-)Prx2(-/-) mutants to obtain insight into the molecular basis of the lower jaw abnormalities. We observed in mutant embryos a local decrease in proliferation of mandibular arch mesenchyme in a medial area. Interestingly, in the oral epithelium adjacent to this mesenchyme, sonic hedgehog (Shh) expression was strongly reduced, indicative of a function for Prx genes in indirect regulation of SHH: Wild-type embryos that were exposed to the hedgehog-pathway inhibitor, jervine, partially phenocopied the lower jaw defects of Prx1(-/-)Prx2(-/-) mutants. In addition, this treatment led to loss of the mandibular incisors. We present a model that describes how loss of Shh expression in Prx1(-/-)Prx2(-/-) mutants leads to abnormal morphogenesis of the mandibular arch.  相似文献   

7.
Dlx2, a member of the distal-less gene family, is expressed in the first branchial arch, prior to the initiation of tooth development, in distinct, non-overlapping domains in the mesenchyme and the epithelium. In the mesenchyme Dlx2 is expressed proximally, whereas in oral epithelium it is expressed distally. Dlx2 has been shown to be involved in the patterning of the murine dentition, since loss of function of Dlx1 and Dlx2 results in early failure of development of upper molar teeth. We have investigated the regulation of Dlx2 expression to determine how the early epithelial and mesenchymal expression boundaries are maintained, to help to understand the role of these distinct expression domains in patterning of the dentition. Transgenic mice produced with a lacZ reporter construct, containing 3.8 kb upstream sequence of Dlx2, led to the mapping of regulatory regions driving epithelial but not mesenchymal expression in the first branchial arch. We show that the epithelial expression of Dlx2 is regulated by planar signalling by BMP4, which is coexpressed in distal oral epithelium. Mesenchymal expression is regulated by a different mechanism involving FGF8, which is expressed in the overlying epithelium. FGF8 also inhibits expression of Dlx2 in the epithelium by a signalling pathway that requires the mesenchyme. Thus, the signalling molecules BMP4 and FGF8 provide the mechanism for maintaining the strict epithelial and mesenchymal expression domains of Dlx2 in the first arch.  相似文献   

8.
Teeth arise from the tooth germ through sequential and reciprocal interactions between immature epithelium and mesenchyme during development. However, the detailed mechanism underlying tooth development from tooth germ mesenchymal cells (TGMCs) remains to be fully understood. Here, we investigate the role of Wnt/β-catenin signalling in BMP9-induced osteogenic/odontogenic differentiation of TGMCs. We first established the reversibly immortalized TGMCs (iTGMCs) derived from young mouse mandibular molar tooth germs using a retroviral vector expressing SV40 T antigen flanked with the FRT sites. We demonstrated that BMP9 effectively induced expression of osteogenic markers alkaline phosphatase, collagen A1 and osteocalcin in iTGMCs, as well as in vitro matrix mineralization, which could be remarkably blunted by knocking down β-catenin expression. In vivo implantation assay revealed that while BMP9-stimulated iTGMCs induced robust formation of ectopic bone, knocking down β-catenin expression in iTGMCs remarkably diminished BMP9-initiated osteogenic/odontogenic differentiation potential of these cells. Taken together, these discoveries strongly demonstrate that reversibly immortalized iTGMCs retained osteogenic/odontogenic ability upon BMP9 stimulation, but this process required the participation of canonical Wnt signalling both in vitro and in vivo. Therefore, BMP9 has a potential to be applied as an efficacious bio-factor in osteo/odontogenic regeneration and tooth engineering. Furthermore, the iTGMCs may serve as an important resource for translational studies in tooth tissue engineering.  相似文献   

9.
The Shh signalling pathway in early tooth development.   总被引:7,自引:0,他引:7  
The Sonic Hedgehog (Shh) signalling pathway has been proposed to play an important role in mammalian tooth development. We describe the spatial and temporal expression of genes in this pathway during early tooth development and interpret these patterns in terms of the likely roles of Shh signalling. We show that the two putative receptors of the Shh ligand, Ptc and Ptch-2, localise in different cells, suggesting Shh may function in different ways as an epithelial and mesenchymal signal. Shh signalling has previously been shown, in other organs, to stimulate cell proliferation. In this paper we analyse the Fgf signalling pathway in Gli-2 mutants and propose a mechanism as to how Gli-2 may regulate cell proliferation in tooth development.  相似文献   

10.
11.
The gene for activin betaA is expressed in the early odontogenic mesenchyme of all murine teeth but mutant mice show a patterning defect where incisors and mandibular molars fail to develop but maxillary molars develop normally. In order to understand why maxillary molar tooth development can proceed in the absence of activin, we have explored the role of mediators of activin signalling in tooth development. Analysis of tooth development in activin receptor II and Smad2 mutants shows that a similar tooth phenotype to activin betaA mutants can be observed. In addition, we identify a novel downstream target of activin signalling, the Iroquois-related homeobox gene, Irx1, and show that its expression in activin betaA mutant embryos is lost in all tooth germs, including the maxillary molars. These results strongly suggest that other transforming growth factor beta molecules are not stimulating the activin signalling pathway in the absence of activin. This was confirmed by a non-genetic approach using exogenous soluble receptors to inhibit all activin signalling in tooth development, which reproduced the genetic phenotypes. Activin, thus, has an essential role in early development of incisor and mandibular molar teeth but this pathway is not required for development of maxillary molars.  相似文献   

12.
Sonic hedgehog regulates growth and morphogenesis of the tooth   总被引:28,自引:0,他引:28  
During mammalian tooth development, the oral ectoderm and mesenchyme coordinate their growth and differentiation to give rise to organs with precise shapes, sizes and functions. The initial ingrowth of the dental epithelium and its associated dental mesenchyme gives rise to the tooth bud. Next, the epithelial component folds to give the tooth its shape. Coincident with this process, adjacent epithelial and mesenchymal cells differentiate into enamel-secreting ameloblasts and dentin-secreting odontoblasts, respectively. Growth, morphogenesis and differentiation of the epithelium and mesenchyme are coordinated by secreted signaling proteins. Sonic hedgehog (Shh) encodes a signaling peptide which is present in the oral epithelium prior to invagination and in the tooth epithelium throughout its development. We have addressed the role of Shh in the developing tooth in mouse by using a conditional allele to remove Shh activity shortly after ingrowth of the dental epithelium. Reduction and then loss of Shh function results in a cap stage tooth rudiment in which the morphology is severely disrupted. The overall size of the tooth is reduced and both the lingual epithelial invagination and the dental cord are absent. However, the enamel knot, a putative organizer of crown formation, is present and expresses Fgf4, Wnt10b, Bmp2 and Lef1, as in the wild type. At birth, the size and the shape of the teeth are severely affected and the polarity and organization of the ameloblast and odontoblast layers is disrupted. However, both dentin- and enamel-specific markers are expressed and a large amount of tooth-specific extracellular matrix is produced. This observation was confirmed by grafting studies in which tooth rudiments were cultured for several days under kidney capsules. Under these conditions, both enamel and dentin were deposited even though the enamel and dentin layers remained disorganized. These studies demonstrate that Shh regulates growth and determines the shape of the tooth. However, Shh signaling is not essential for differentiation of ameloblasts or odontoblasts.  相似文献   

13.
Unlike humans, who have a continuous row of teeth, mice have only molars and incisors separated by a toothless region called a diastema. Although tooth buds form in the embryonic diastema, they regress and do not develop into teeth. Here, we identify members of the Sprouty (Spry) family, which encode negative feedback regulators of fibroblast growth factor (FGF) and other receptor tyrosine kinase signaling, as genes that repress diastema tooth development. We show that different Sprouty genes are deployed in different tissue compartments--Spry2 in epithelium and Spry4 in mesenchyme--to prevent diastema tooth formation. We provide genetic evidence that they function to ensure that diastema tooth buds are refractory to signaling via FGF ligands that are present in the region and thus prevent these buds from engaging in the FGF-mediated bidirectional signaling between epithelium and mesenchyme that normally sustains tooth development.  相似文献   

14.
15.
Here we study the role of Shh signaling in tooth morphogenesis and successional tooth initiation in snakes and lizards (Squamata). By characterizing the expression of Shh pathway receptor Ptc1 in the developing dentitions of three species (Eublepharis macularius, Python regius, and Pogona vitticeps) and by performing gain- and loss-of-function experiments, we demonstrate that Shh signaling is active in the squamate tooth bud and is required for its normal morphogenesis. Shh apparently mediates tooth morphogenesis by separate paracrine- and autocrine-mediated functions. According to this model, paracrine Shh signaling induces cell proliferation in the cervical loop, outer enamel epithelium, and dental papilla. Autocrine signaling within the stellate reticulum instead appears to regulate cell survival. By treating squamate dental explants with Hh antagonist cyclopamine, we induced tooth phenotypes that closely resemble the morphological and differentiation defects of vestigial, first-generation teeth in the bearded dragon P. vitticeps. Our finding that these vestigial teeth are deficient in epithelial Shh signaling further corroborates that Shh is needed for the normal development of teeth in snakes and lizards. Finally, in this study, we definitively refute a role for Shh signaling in successional dental lamina formation and conclude that other pathways regulate tooth replacement in squamates.  相似文献   

16.
Sonic hedgehog (Shh), a member of the mammalian Hedgehog (Hh) family, plays a key role during embryogenesis and organogenesis. Tooth development, odontogenesis, is governed by sequential and reciprocal epithelial-mesenchymal interactions. Genetic removal of Shh activity from the dental epithelium, the sole source of Shh during tooth development, alters tooth growth and cytological organization within both the dental epithelium and mesenchyme of the tooth. In this model it is not clear which aspects of the phenotype are the result of the direct action of Shh on a target tissue and which are indirect effects due to deficiencies in reciprocal signalings between the epithelial and mesenchymal components. To distinguish between these two alternatives and extend our understanding of Shh's actions in odontogenesis, we have used the Cre-loxP system to remove Smoothened (Smo) activity in the dental epithelium. Smo, a seven-pass membrane protein is essential for the transduction of all Hh signals. Hence, removal of Smo activity from the dental epithelium should block Shh signaling within dental epithelial derivatives while preserving normal mesenchymal signaling. Here we show that Shh-dependent interactions occur within the dental epithelium itself. The dental mesenchyme develops normally up until birth. In contrast, dental epithelial derivatives show altered proliferation, growth, differentiation and polarization. Our approach uncovers roles for Shh in controlling epithelial cell size, organelle development and polarization. Furthermore, we provide evidence that Shh signaling between ameloblasts and the overlying stratum intermedium may involve subcellular localization of Patched 2 and Gli1 mRNAs, both of which are targets of Shh signaling in these cells.  相似文献   

17.
It is believed that mouse dentition is determined by a prepatterning of the oral epithelium into molar (proximal) and incisor (distal) regions. The LIM homeodomain protein Islet1 (ISL1) is involved in the regulation of differentiation of many cell types and organs. During odontogenesis, we find Islet1 to be exclusively expressed in epithelial cells of the developing incisors but not during molar development. Early expression of Islet1 in presumptive incisor epithelium is coincident with expression of Bmp4, which acts to induce Msx1 expression in the underlying mesenchyme. To define the role of ISL1 in the acquisition of incisor shape, we have analysed regulation of Islet1 expression in mandibular explants. Local application of bone morphogenetic protein 4 (BMP4) in the epithelium of molar territories either by bead implantation or by electroporation stimulated Islet1 expression. Inhibition of BMP signalling with Noggin resulted in a loss of Islet1 expression. Inhibition of Islet1 in distal epithelium resulted in a loss of Bmp4 expression and a corresponding loss of Msx1 expression, indicating that a positive regulatory loop exists between ISL1 and BMP4 in distal epithelium. Ectopic expression of Islet1 in proximal epithelium produces a loss of Barx1 expression in the mesenchyme and resulted in inhibition of molar tooth development. Using epithelial/mesenchymal recombinations we show that at E10.5 Islet1 expression is independent of the underlying mesenchyme whereas at E12.5 when tooth shape specification has passed to the mesenchyme, Islet1 expression requires distal (presumptive incisor) mesenchyme. Islet1 thus plays an important role in regulating distal gene expression during jaw and tooth development.  相似文献   

18.
Sonichedgehog(Shh)信号通路在牙早期发育中起关键作用,Shh通过与其特定的受体Ptc/Smo蛋白复合物相互作用来激活整个信号通路。Shh在牙早期发育过程中的表达具有时间和空间特异性,通过自分泌和旁分泌作用于上皮组织以及周围的间充质,促进细胞增殖、分化,调控牙的形态发生。Shh基因缺失将导致小鼠在帽状期牙形态的严重畸形,牙体变小,牙索缺失。对Shh信号通路在牙早期发育的作用及其与Wnt信号通路、BMP家族、FGF家族和MSX家族之间的相互关系进行综述。  相似文献   

19.
20.
Dental trigeminal nerve fiber growth and patterning are strictly integrated with tooth morphogenesis, but it is still unknown, how these two developmental processes are coordinated. Here we show that targeted inactivation of the dental epithelium expressed Fgfr2b results in cessation of the mouse mandibular first molar development at the degenerated cap stage and the failure of the trigeminal molar nerve to establish the lingual branch at E13.5 stage while the buccal branch develops properly. This axon patterning defect correlates to the histological absence of the mesenchymal dental follicle and adjacent Semaphorin3A-free dental follicle target field as well as appearance of ectopic Sema3A expression domain in the lingual side of the epithelial bud. Although the mesenchymal ligands for Fgfr2b, Fgf3 and -10 were present in the Fgfr2b(-/)(-) dental mesenchyme, mutant dental epithelium showed dramatically reduced proliferation and the lack of Fgf3. Tgfbeta1, which controls Sema3A was absent from the Fgfr2b(-/-) tooth germ, and Sema3A was specifically downregulated in the dental mesenchyme at the bud and cap stage. In addition, the epithelial primary enamel knot signaling center although being molecularly present neither was histologically detectable nor expressed Bmp4 and Fgf3 as well as Fgf4, which is essential for tooth morphogenesis and stimulates mesenchymal Fgf3 and Tgfbeta1. Fgf4 beads rescued Tgfbeta1 in the Fgfr2b(-/-) dental mesenchyme explants and Tgfbeta1 induced de novo Sema3A expression in the dental mesenchyme. Collectively these results demonstrate that epithelial Fgfr2b controls tooth morphogenesis and dental axon patterning, and suggests that Fgfr2b, by mediating local epithelial-mesenchymal interactions, integrates these two distinct developmental processes during odontogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号