共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Initiation of eukaryotic DNA replication is a complex process including the recognition of initiation sites on DNA, multi-step DNA preparation for duplication, and assembly of multi-protein complexes capable of beginning DNA synthesis at initiation sites. The process starts at the late M phase and lasts till the appropriate time of the S phase for each initiation site. A chain of interesting interactions between Orc1p-6p, Cdc6p, Mcm2p-7p, Mcm10p, Cdt1, Cdc45p, Dbf4/Cdc7p, RPA, and DNA polymerase takes place during this period. The sequence of these interactions is controlled by cyclin-dependent kinases, as well as by ubiquitin-dependent proteolysis in the proteasome. This review summarizes the data on proteins initiating DNA replication and factors controlling their activities. 相似文献
3.
4.
In DNA replication, DNA chains are generally initiated from small pieces of ribonucleotides attached to DNA templates. These ‘primers’ are synthesized by various enzymatic mechanisms in Escherichia coli. Studies on primer RNA synthesis on single-stranded DNA templates containing specific ‘priming signals’ revealed the presence of two distinct modes, ie immobile and mobile priming. The former includes primer RNA synthesis by primase encoded by dnaG and by RNA polymerase containing a σ70 subunit. Priming is initiated at a specific site in immobile priming. Novel immobile priming signals were identified from various plasmid replicaons, some of which function in initiation of the leading strand synthesis. The latter, on the other hand, involves a protein complex, primosome, which contains DnaB, the replicative helicase for E coli chromosomal replication. Utilizing the energy fueled by ATP hydrolysis of DnaB protein, primosomes are able to translocate on a template DNA and primase synthesizes primer RNAs at multiple sites. Two distinct primosomes. DnaA-dependent primosome supports normal chromosomal identified, which are differentially utilized for E coli chromosomal replication. Whereas DnaA-dependent primosome supports normal chromosomal replication from oriC, the PriA-dependent primosome functions in oriC-independent chromosomal replication observed in DNA-damaged cells or cells lacking RNaseH activity. In oriC-independent replication, PriA protein may recognize the D- or R-loop structure, respectively, to initiate assembly of a primosome which mediates primer RNA synthesis and replication fork progression. 相似文献
5.
Thomas A. Guilliam 《Critical reviews in biochemistry and molecular biology》2020,55(5):469-481
Abstract In eukaryotes three DNA polymerases (Pols), α, δ, and ε, are tasked with bulk DNA synthesis of nascent strands during genome duplication. Most evidence supports a model where Pol α initiates DNA synthesis before Pol ε and Pol δ replicate the leading and lagging strands, respectively. However, a number of recent reports, enabled by advances in biochemical and genetic techniques, have highlighted emerging roles for Pol δ in all stages of leading-strand synthesis; initiation, elongation, and termination, as well as fork restart. By focusing on these studies, this review provides an updated perspective on the division of labor between the replicative polymerases during DNA replication. 相似文献
6.
7.
Bermudez VP Farina A Raghavan V Tappin I Hurwitz J 《The Journal of biological chemistry》2011,286(33):28963-28977
In eukaryotic cells, DNA replication is carried out by the coordinated action of three DNA polymerases (Pols), Pol α, δ, and ε. In this report, we describe the reconstitution of the human four-subunit Pol ε and characterization of its catalytic properties in comparison with Pol α and Pol δ. Human Pol ε holoenzyme is a monomeric complex containing stoichiometric subunit levels of p261/Pol 2, p59, p17, and p12. We show that the Pol ε p261 N-terminal catalytic domain is solely responsible for its ability to catalyze DNA synthesis. Importantly, human Pol (hPol) ε was found more processive than hPol δ in supporting proliferating cell nuclear antigen-dependent elongation of DNA chains, which is in keeping with proposed roles for hPol ε and hPol δ in the replication of leading and lagging strands, respectively. Furthermore, GINS, a component of the replicative helicase complex that is composed of Sld5, Psf1, Psf2, and Psf3, was shown to interact weakly with all three replicative DNA Pols (α, δ, and ε) and to markedly stimulate the activities of Pol α and Pol ε. In vivo studies indicated that siRNA-targeted depletion of hPol δ and/or hPol ε reduced cell cycle progression and the rate of fork progression. Under the conditions used, we noted that depletion of Pol ε had a more pronounced inhibitory effect on cellular DNA replication than depletion of Pol δ. We suggest that reduction in the level of Pol δ may be less deleterious because of its collision-and-release role in lagging strand synthesis. 相似文献
8.
Eric B. Carstens 《中国病毒学》2009,24(4):243-267
Baculoviruses were first identified as insect-specific pathogens, and it was this specificity that lead to their use as safe, target specific biological pesticides. For the past 30 years, AcMNPV has served as the subject of intense basic molecular research into the baculovirus infectious cycle including the interaction of the virus with a continuous insect cell line derived from Spodoptera frugiperda. The studies on baculoviruese have led to an in-depth understanding of the physical organization of the viral genomes including many complete genomic sequences, the time course of gene expression, and the application of this basic research to the use of baculoviruses not only as insecticides, but also as a universal eukaryotic protein expression system, and a potential vector in gene therapy. A great deal has also been discovered about the viral genes required for the replication of the baculovirus genome, while much remains to be learned about the mechanism of viral DNA replication. This report outlines the current knowledge of the factors involved in baculovirus DNA replication, using data on AcMNPV as a model for most members of the Baculoviridae. 相似文献
9.
The replication of genetic information, as we know it from today's biology, relies on template-directed, polymerase-catalyzed extension of primers. It is known that short stretches of complementary RNA can form on templates in the absence of enzymes. This account summarizes recent work on efficient enzyme-free primer extension, both with 3'-amino-terminal deoxyribonucleotide primers and with primers made of unmodified RNA. Near-quantitative primer extension with half-life times on the order of hours has been demonstrated by using azaoxybenzotriazolides of nucleotides and downstream-binding oligomers. Further, small non-nucleosidic substituents placed on the terminus of the template or the downstream-binding oligomer have been shown to increase the rate and fidelity of primer-extension reactions. Since all four templating bases (A, C, G, T/U) direct sequence-selective primer-extension steps, we feel that there is renewed hope that full, nonenzymatic replication from monomers may eventually be achieved. 相似文献
10.
Bacteriophage P4 DNA replication 总被引:5,自引:0,他引:5
Abstract: Replication of satellite phage P4 of Escherichia coli is dependent on three phage-encoded elements: the origin ( ori ), a cis replication element ( crr ), and the product of the α gene, gpα. In vitro P4 replication is origin-specific resulting in monomeric form I DNA. DNA synthesis requires chromosomally encoded proteins DNA polymerase III holoenzyme, SSB, DNA gyrase and probably topoisomerase I ; host-encoded initiation and priming functions are dispensable. The α protein is multifunctional in P4 replication, combining three activities in a single polypeptide chain. First, the protein complexes specifically with type I repeats at ori and crr . Second, the helicase activity associated with gpα unwinds DNA with 3'→ 5' polarity. Third, the primase activity results in the synthesis of RNA primers. Defined sequence motifs in gpα correlate with the helicase and primase activities which are arranged in distinct, separable domains. Primase activity is associated with the N-terminal half of the protein, ori / crr binding with the C-terminal portion. A model for the initiation mechanism of P4 replication which resembles that of mammalian simian virus 40 is discussed. 相似文献
11.
Timothy J. Gardiner Christo P. Christov Alexander R. Langley Torsten Krude 《RNA (New York, N.Y.)》2009,15(7):1375-1385
Noncoding Y RNAs are required for the reconstitution of chromosomal DNA replication in late G1 phase template nuclei in a human cell-free system. Y RNA genes are present in all vertebrates and in some isolated nonvertebrates, but the conservation of Y RNA function and key determinants for its function are unknown. Here, we identify a determinant of Y RNA function in DNA replication, which is conserved throughout vertebrate evolution. Vertebrate Y RNAs are able to reconstitute chromosomal DNA replication in the human cell-free DNA replication system, but nonvertebrate Y RNAs are not. A conserved nucleotide sequence motif in the double-stranded stem of vertebrate Y RNAs correlates with Y RNA function. A functional screen of human Y1 RNA mutants identified this conserved motif as an essential determinant for reconstituting DNA replication in vitro. Double-stranded RNA oligonucleotides comprising this RNA motif are sufficient to reconstitute DNA replication, but corresponding DNA or random sequence RNA oligonucleotides are not. In intact cells, wild-type hY1 or the conserved RNA duplex can rescue an inhibition of DNA replication after RNA interference against hY3 RNA. Therefore, we have identified a new RNA motif that is conserved in vertebrate Y RNA evolution, and essential and sufficient for Y RNA function in human chromosomal DNA replication. 相似文献
12.
The fidelity of DNA replication is achieved in a multiplicative process encompassing nucleobase selection and insertion, removal of misinserted nucleotides by exonuclease activity, and enzyme dissociation from primer/templates that are misaligned due to mispairing. In this study, we have evaluated the effect of altering these kinetic processes on the dynamics of translesion DNA replication using the bacteriophage T4 replication apparatus as a model system. The effect of enhancing the processivity of the T4 DNA polymerase, gp43, on translesion DNA replication was evaluated using a defined in vitro assay system. While the T4 replicase (gp43 in complex with gp45) can perform efficient, processive replication using unmodified DNA, the T4 replicase cannot extend beyond an abasic site. This indicates that enhancing the processivity of gp43 does not increase unambiguously its ability to perform translesion DNA replication. Surprisingly, the replicase composed of an exonuclease-deficient mutant of gp43 was unable to extend beyond the abasic DNA lesion, thus indicating that molecular processes involved in DNA polymerization activity play the predominant role in preventing extension beyond the non-coding DNA lesion. Although neither T4 replicase complex could extend beyond the lesion, there were measurable differences in the stability of each complex at the DNA lesion. Specifically, the exonuclease-deficient replicase dissociates at a rate constant, k(off), of 1.1s(-1) while the wild-type replicase remains more stably associated at the site of DNA damage by virtue of a slower measured rate constant (k(off) 0.009s(-1)). The increased lifetime of the wild-type replicase suggests that idle turnover, the partitioning of the replicase from its polymerase to its exonuclease active site, may play an important role in maintaining fidelity. Further attempts to perturb the fidelity of the T4 replicase by substituting Mn(2+) for Mg(2+) did not significantly enhance DNA synthesis beyond the abasic DNA lesion. The results of these studies are interpreted with respect to current structural information of gp43 alone and complexed with gp45. 相似文献
13.
14.
Henneke G Flament D Hübscher U Querellou J Raffin JP 《Journal of molecular biology》2005,350(1):53-64
DNA polymerases carry out DNA synthesis during DNA replication, DNA recombination and DNA repair. During the past five years, the number of DNA polymerases in both eukarya and bacteria has increased to at least 19 and multiple biological roles have been assigned to many DNA polymerases. Archaea, the third domain of life, on the other hand, have only a subset of the eukaryotic-like DNA polymerases. The diversity among the archaeal DNA polymerases poses the intriguing question of their functional tasks. Here, we focus on the two identified DNA polymerases, the family B DNA polymerase B (PabpolB) and the family D DNA polymerase D (PabpolD) from the hyperthermophilic euryarchaeota Pyrococcus abyssi. Our data can be summarized as follows: (i) both Pabpols are DNA polymerizing enzymes exclusively; (ii) their DNA binding properties as tested in gel shift competition assays indicated that PabpolD has a preference for a primed template; (iii) PabPolD is a primer-directed DNA polymerase independently of the primer composition whereas PabpolB behaves as an exclusively DNA primer-directed DNA polymerase; (iv) PabPCNA is required for PabpolD to perform efficient DNA synthesis but not PabpolB; (v) PabpolD, but not PabpolB, contains strand displacement activity; (vii) in the presence of PabPCNA, however, both Pabpols D and B show strand displacement activity; and (viii) we show that the direct interaction between PabpolD and PabPCNA is DNA-dependent. Our data imply that PabPolD might play an important role in DNA replication likely together with PabpolB, suggesting that archaea require two DNA polymerases at the replication fork. 相似文献
15.
16.
17.
A 17S multiprotein form of murine cell DNA polymerase mediates polyomavirus DNA replication in vitro
Yan Wu Robert Hickey Kenneth Lawlor Philip Wills Fang Yu Harvey Ozer Robyn Starr Jiang Yuan Quan Marietta Lee Linda Malkas 《Journal of cellular biochemistry》1994,54(1):32-46
We have identified and purified a multiprotein form of DNA polymerase from the murine mammary carcinoma cell line (FM3A) using a series of centrifugation, polyethylene glycol precipitation, and ion-exchange chromatography steps. Proteins and enzymatic activities associated with this mouse cell multiprotein form of DNA polymerase include the DNA polymerases α and δ, DNA primase, proliferating cell nuclear antigen (PCNA), DNA ligase I, DNA helicase, and DNA topoisomerases I and II. The sedimentation coefficient of the multiprotein form of DNA polymerase is 17S, as determined by sucrose density gradient analysis. The integrity of the murine cell multiprotein form of DNA polymerase is maintained after treatment with detergents, salt, RNase, DNase, and after chromatography on DE52-cellulose, suggesting that the association of the proteins with one another is independent of nonspecific interaction with other cellular macromolecular components. Most importantly, we have demonstrated that this complex of proteins is fully competent to replicate polyomavirus DNA in vitro. This result implies that all of the cellular activities required for large T-antigen dependent in vitro polyomavirus DNA synthesis are present within the isolated 17S multiprotein form of the mouse cell DNA replication activities. A model is proposed to represent the mammalian Multiprotein DNA Replication Complex (MRC) based on the fractionation and chromatographic profiles of the individual proteins found to co-purify with the complex. 相似文献
18.
Barbara Ben Yamin Sana AhmedSeghir Junya Tomida Emmanuelle Despras Caroline Pouvelle Andrey Yurchenko Jordane Goulas Raphael Corre Quentin Delacour Nathalie Droin Philippe Dessen Didier Goidin Sabine S Lange Sarita Bhetawal Maria Teresa MitjavilaGarcia Giuseppe Baldacci Sergey Nikolaev Jean Charles Cadoret Richard D Wood Patricia L Kannouche 《The EMBO journal》2021,40(21)
19.
E. Rampakakis D.N. Arvanitis D. Di Paola M. Zannis‐Hadjopoulos 《Journal of cellular biochemistry》2009,106(4):512-520
DNA replication in eukaryotes is initiated at multiple replication origins distributed over the entire genome, which are normally activated once per cell cycle. Due to the complexity of the metazoan genome, the study of metazoan replication origins and their activity profiles has been less advanced than in simpler genome systems. DNA replication in eukaryotes involves many protein–protein and protein–DNA interactions, occurring in multiple stages. As in prokaryotes, control over the timing and frequency of initiation is exerted at the initiation site. A prerequisite for understanding the regulatory mechanisms of eukaryotic DNA replication is the identification and characterization of the cis‐acting sequences that serve as replication origins and the trans‐acting factors (proteins) that interact with them. Furthermore, in order to understand how DNA replication may become deregulated in malignant cells, the distinguishing features between normal and malignant origins of DNA replication as well as the proteins that interact with them must be determined. Based on advances that were made using simple genome model systems, several proteins involved in DNA replication have been identified. This review summarizes the current findings about metazoan origins of DNA replication and their interacting proteins as well as the role of chromatin structure in their regulation. Furthermore, progress in origin identification and isolation procedures as well as potential mechanisms to inhibit their activation in cancer development and progression are discussed. J. Cell. Biochem. 106: 512–520, 2009. © 2009 Wiley‐Liss, Inc. 相似文献
20.
DNA primases catalyze the synthesis of oligoribonucleotides required for the initiation of lagging strand DNA synthesis. Prokaryotic primases consist of a zinc-binding domain (ZBD) necessary for recognition of a specific template sequence and a catalytic RNA polymerase domain. Interactions of both domains with the DNA template and ribonucleotides are required for primer synthesis. Five tryptophan residues are dispersed in the primase of bacteriophage T7: Trp-42 in the ZBD and Trp-69, -97, -147, and -255 in the RNA polymerase domain. Previous studies showed that replacement of Trp-42 with alanine in the ZBD decreases primer synthesis, whereas substitution of non-aromatic residues for Trp-69 impairs both primer synthesis and delivery. However, the roles of tryptophan at position 97, 147, or 255 remain elusive. To investigate the essential roles of these residues, we replaced each tryptophan with the structurally similar tyrosine and examined the effect of this subtle alteration on primer synthesis. The substitution at position 42, 97, or 147 reduced primer synthesis, whereas substitution at position 69 or 255 did not. The functions of the tryptophans were further examined at each step of primer synthesis. Alteration of residue 42 disturbed the conformation of the ZBD and resulted in partial loss of the zinc ion, impairing binding to the ssDNA template. Replacement of Trp-97 with tyrosine reduced the binding affinity to NTP and the catalysis step. The replacement of Trp-147 with tyrosine also impaired the catalytic step. Therefore, Trp-42 is important in maintaining the conformation of the ZBD for template binding; Trp-97 contributes to NTP binding and the catalysis step; and Trp-147 maintains the catalysis step. 相似文献