首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 218 毫秒
1.
磷酸饥饿对番茄幼苗生长状况及其磷吸收的影响   总被引:8,自引:2,他引:8  
本文就磷酸饥饿对番茄幼苗生长状况及共磷吸收的影响进行了研究。结果表明,磷酸饥饿时,番茄幼苗的平均高度下降,而主根的长度却明显长于对照。磷酸饥饿初期对番茄幼苗鲜重累积影响不大,但随着饥饿的继续,受胁迫苗的鲜重累积与对照间的差异加大并且变得明显低于对照。  相似文献   

2.
磷饥饿条件下番茄幼苗的H^+分泌速率明显提高,质膜质子泵专一性抑制剂钒酸盐能显著抑制番茄幼苗的H^+分泌,也能显著抑制其Pi吸收。此结果表明,磷饥饿时番茄幼苗Pi吸收速率的变化与H^+分泌速率的变化之间可能具有一定的相关性,并进一步暗示质膜H^+-ATPase可能参与其中,本文结果还表明,Pi/H^+的准量关系约为1:1。  相似文献   

3.
磷饥饿提高了番茄幼苗质膜H ATP酶活性并促进了番茄幼苗根部的H 分泌。动力学分析表明 ,磷饥饿使番茄幼苗根部质膜H ATP酶的Km 值明显降低 ,亦即提高了该酶对其底物的亲和力 ,但对该酶的Vmax影响不大。另外 ,磷饥饿并不改变ATP酶的最适 pH值 (最适 pH值为 6.5)。钒酸盐显著抑制番茄幼苗根部质膜ATP酶的活性以及H 分泌 ,也显著抑制番茄幼苗的Pi吸收。与对照相比 ,上述抑制作用在饥饿处理的植物中表现得更强。以上结果表明 ,磷饥饿时高亲和性Pi传递系统的诱导很可能包含质膜H ATP酶的参与。  相似文献   

4.
磷饥饿提高了番茄幼苗质膜H+-ATP酶活性并促进了番茄幼苗根部的H+分泌。动力学分析表明,磷饥饿使番茄幼苗根部质膜H+-ATP酶的Km值明显降低,亦即提高了该酶对其底物的亲和力,但对该酶的Vmax影响不大。另外,磷饥饿并不改变ATP酶的最适pH值(最适pH值为6.5)。钒酸盐显著抑制番茄幼苗根部质膜ATP酶的活性以及H+分泌,也显著抑制番茄幼苗的Pi吸收。与对照相比,上述抑制作用在饥饿处理的植物中表现得更强。以上结果表明,磷饥饿时高亲和性Pi传递系统的诱导很可能包含质膜H+-ATP酶的参与。  相似文献   

5.
磷饥饿提高了番茄幼苗质膜H^ -ATP酶活性并促进了番茄幼苗根部的H^+分泌和。动力学分析表明,磷饥饿使番茄功苗根部质膜H^ -ATP酶的K m值明显降低,亦即提高了该酶对其底物的亲和力,但对该酶的Vmax影响不大。另外,磷饥饿并不改变ATP酶的最适pH值(最适pH值为6.5)。钡酸盐显著抑制番茄幼苗根部质膜ATP酶的活性以及H^+分泌,也显著抑制番茄幼苗的Pi吸收。与对照相比,上述抑制作用在饥饿处理的植物中表现得更强,以上结果表明,磷饥饿时高亲和性Pi传递系统的诱导很可能包含质膜H^ -ATP酶的参与。  相似文献   

6.
在小麦(Triticum aestivum L.)雌配子体发育过程中,胚囊周围邻近的珠心细胞退化降解,并出现很高的酸性磷酸酶反应,特别是合点部分最强。电镜细胞化学定位也表明退化珠心细胞质中有强烈的酸性磷酸酶活力,它们存在于多层环状的胞质结构中,而远离胚囊的非退化珠心细胞中无上述结构,酸性磷酸酶活性仅出现于液泡中。认为珠心细胞的退化是一种自溶现象。从功能大孢子至七细胞胚囊期,胚囊内部胞质酸性磷酸酶活性很低,合点与珠孔两端的反应强度无明显区別。后期成熟胚囊阶段,反足细胞中出现强烈酸性磷酸酶活性,中央细胞次之,而助细胞及卵细胞中很弱。  相似文献   

7.
磷饥饿条件下番茄幼苗的H+分泌速率明显提高。质膜质子泵专一性抑制剂钒酸盐能显著抑制番茄幼苗的H+分泌,也能显著抑制其Pi吸收。此结果表明,磷饥饿时番茄幼苗Pi吸收速率的变化与H+分泌速率的变化之间可能具有一定的相关性,并进一步暗示质膜H+-ATPase可能参与其中。本文结果还表明,Pi/H+的准量关系约为1:1。  相似文献   

8.
磷饥饿下番茄幼苗根系液泡膜H+-ATPase活性的适应性变化   总被引:4,自引:0,他引:4  
以‘世纪星’番茄为材料。研究了磷饥饿下番茄幼苗的生长状况及其根部液泡膜H^+-ATPase活性的适应性变化。结果表明:磷饥饿下番茄幼苗的平均高度均低于对照苗,而主根长度均显著长于对照。磷饥饿提高了番茄幼苗根部液泡膜H^+-ATPase的水解活性,随着磷胁迫时间的延长,该酶的活性逐渐增大,在磷饥饿7d时达到最大,后又略有降低;而对照番茄幼苗根部该酶的活性变化很小。动力学分析表明:磷饥饿使番茄幼苗根部液泡膜H^+-ATPase的Km值明显降低,但对该酶的Kmax影响不大。这说明磷饥饿提高了该酶对其底物的亲和力。此外,磷饥饿并不改变液泡膜H^+-ATPase酶的最适pH值(仍为7.5)。  相似文献   

9.
重金属镉对鲫鱼碱性磷酸酶和酸性磷酸酶活性的影响   总被引:11,自引:0,他引:11  
詹付凤  赵欣平 《四川动物》2007,26(3):641-643
研究了重金属镉对鲫鱼肠、肝胰脏、鳃组织碱性磷酸酶和酸性磷酸酶活性的影响。结果表明,在0.2、0.4、0.8mg/L镉浓度条件下静态染毒12h、24h、48h、96h后,鲫鱼肠、鳃组织中碱性磷酸酶(AKP)和酸性磷酸酶(ACP)的活性降低,肝和胰脏的碱性磷酸酶活性没有明显变化,其酸性磷酸酶活性则升高。  相似文献   

10.
泡囊丛枝(VA)菌根对玉米际磷酸酶活性的影响   总被引:9,自引:3,他引:6  
以玉米为材料,利用三室隔网培养方法,研究了缺P土壤上施用植酸和卵磷脂时接种几种菌根真菌(Glomus mosseae,Glmous versiformea,Gigaspora margarita)对根际土壤酸性磷酸酶和碱性磷酸酶活性的影响,玉米生长70d后,收获测定距根表不同距离土壤中的磷酸酶活性,结果表明,接种菌根真菌增加了根际土壤酸性和碱性磷酸酶活性,Gigaspora margarita菌根菌的作用大于其它2个菌极菌,不同P源对磷酸酶活性有明显影响。  相似文献   

11.
The acid phosphatase activities from roots and both stems and leaves of tomato seedlings all in-creased markedly under phosphate starvation. Phosphate starvation also increased the activities of acid phos-phatase from cell surface of, and released by roots of tomato seedlings. The kinetic analysis of acid phos-phatase of roots of tomato seedlings revealed that phosphate starvation increased the affinity of the enzyme to its substrate. The results also revealed that phosphate starvation had no effect on the optimum pH (pH 4.93) of the acid phosphatase of roots of tomato seedlings. It was also found that molybdate strongly inhibited not only the activities of acid phosphatase but also Pi- uptake rates of tomato seedlings.  相似文献   

12.
磷酸盐饥饿时番茄幼苗根部质膜蛋白组分的变化   总被引:2,自引:0,他引:2  
对处于磷酸盐饥饿条件下的番茄幼苗根部质膜以及去除质膜的其他膜部分的蛋白质含量及组分的变化进行了检测。结果显示,磷酸盐饥饿第7d时,受胁迫苗根部质膜及去除质膜的其他膜蛋白质含量与各自的对照相当。而SDS-PAGE的结果表明,磷酸盐饥饿第7d时受胁迫苗根部质膜蛋白质中出现4条对照中所没有的新的多肽(分子量分别为34kD,36kD,46kD和49kD)。该结果经浓度梯度电泳得到进一步的证实。本文推测在受  相似文献   

13.
In tomato seedlings ( Lycopersicon esculentum Mill. cv. Lukullus), phosphate mobilizing enzymes (acid phosphatase, phytase and ribonuclease) responded to the absence of an exogenous phosphate source with a remarkable increase in their specific activities. The definite beginning of a stress response on the level of enzyme activity was revealed at day 10 after sowing. The increase was tightly controlled by the decline of the free cellular phosphate level. Thus, in phosphate-deficient roots derived from 14-d-old seedlings, the enzyme activities were up to 32-fold higher than in the control plants. Only 7% of the free cellular phosphate content of control roots was measured in this part of the plants. However, phosphate-starved plants do not show visible deficiency symptoms at this stage. In addition, we found that phosphohydrolases reached their maximum specific activity early in germination, independent of the exogenous phosphate supply. Furthermore, acid phosphatase and ribonuclease isoforms exhibited different patterns depending on the nutrient supply, as well as on the developmental stage. The results of this work allow us to compare the responses of whole tomato plants following phosphate deprivation with those of a homologous suspension cell culture recently examined.  相似文献   

14.
15.
Induction of maize acid phosphatase activities under phosphorus starvation   总被引:14,自引:1,他引:13  
Yun  Song Joong  Kaeppler  Shawn M. 《Plant and Soil》2001,237(1):109-115
Large variation in phosphorus-(P) acquisition efficiency exists among maize inbred and hybrid genotypes. Acid phosphatases are a type of enzyme that affects P acquisition and P-use efficiency in plants. The objectives of this research were (1) to characterize acid phosphatase activity in maize grown hydroponically under P starvation, and (2) to determine if there is differential induction of acid phosphatases in two maize genotypes previously characterized as P efficient (Mo17) and P inefficient (B73). B73 and Mo17 seedlings were grown hydroponically and both intracellular and secreted acid phosphatase activities were characterized. Fresh seedling weight of both genotypes decreased under P starvation, but percent fresh weight allocated to roots increased 14 days after P starvation in B73. Soluble protein concentration in shoots and roots was affected little, but secreted protein decreased by 40 and 20% in B73 and Mo17 seedlings grown without P for 14 days. Intracellular and secreted acid phosphate activity increased substantially in leaves and roots in B73 and Mo17 in response to P starvation. Secreted APase activity per unit protein increased 310 and 300% in B73 and Mo17, respectively, 7 days after P withdrawal. One of the minor isozymes identified on non-denaturing PAGE, was increased specifically in response to P starvation in both maize genotypes. The patterns and levels of change in APase activities in B73 and Mo17 were not sufficiently different to account for the diverse growth response of these genotypes in low-P conditions. The results suggest that APases may not be a major mechanism for scavenging or acquiring P and changes in APases may reflect a state of P stress in both varieties. Other factors such as root architecture, secretion of low-molecular weight carboxylates and microbial interactions might explain the difference between these two genotypes.  相似文献   

16.
Both tomato (Lycopersicon esculentum cv VF 36) plants and suspension cultured cells show phosphate starvation inducible (psi) excretion of acid phosphatase (Apase). Apase excretion in vitro was proportional to the level of exogenous orthophosphate (Pi). Intracellular Apase activity remained the same in both Pi-starved and sufficient cells, while Apase excreted by the starved cells increased by as much as six times over unstressed control cells on a dry weight basis. At peak induction, 50% of total Apase was excreted. Ten day old tomato seedlings grown without Pi showed slight growth reduction versus unstressed control plants. The Pi-depleted roots showed psi enhancement of Apase activity. Severely starved seedlings (17 days) reached only one-third of the biomass of unstressed control plants but, because of a combination of psi Apase excretion by roots and a shift in biomass to this organ, they excreted 5.5 times the Apase activity of the unstressed control. Observed psi Apase excretion may be part of a phosphate starvation rescue system in plants. The utility of the visible indicator dye 5-bromo-4-chloro-3-indolyl-phosphate-p-toluidine as a phenotypic marker for plant Apase excretion is demonstrated.  相似文献   

17.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号