首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Summary The RAD1 and RAD3 genes of Saccharomyces cerevisiae are required for excision repair of UV damaged DNA. In addition, the RAD3 gene is essential since rad3 deletions are recessive lethals. We have examined the induction of the RAD1 and RAD3 genes by DNA damage and during the cell division cycle. We have made fusions of the RAD1 and RAD3 genes with the Escherichia coli lacZ gene encoding -galactosidase. -galactosidase activity was measured in a Rad+ yeast strain containing the RAD1-lacZ or the RAD3-lacZ fusion, either in a multicopy replicating plasmid or as a single copy integrant resulting from transformation with an integrating plasmid which transforms yeast by homologous recombination in the yeast genome. No induction of -galactosidase activity occurred after ultraviolet light (UV) or 4-nitroquinoline-1-oxide (NQO) treatment. Haploid cells of mating type a were synchronized by treatment with factor and -galactosidase activity was determined during different cell cycle stages. No change in -galactosidase activity was observed in the strain containing the RAD1-lacZ or the RAD3-lacZ fusion integrated in the yeast genome.  相似文献   

4.
In wild-type Saccharomyces cerevisiae, a checkpoint slows the rate of progression of an ongoing S phase in response to exposure to a DNA-alkylating agent. Mutations that eliminate S phase regulation also confer sensitivity to alkylating agents, leading us to suggest that, by regulating the S phase rate, cells are either better able to repair or better able to replicate damaged DNA. In this study, we determine the effects of mutations that impair S phase regulation on the ability of excision repair-defective cells to replicate irreparably UV-damaged DNA. We assay survival after UV irradiation, as well as the genetic consequences of replicating a damaged template, namely mutation and sister chromatid exchange induction. We find that RAD9, RAD17, RAD24, and MEC3 are required for UV-induced (although not spontaneous) mutagenesis, and that RAD9 and RAD17 (but not REV3, RAD24, and MEC3) are required for maximal induction of replication-dependent sister chromatid exchange. Therefore, checkpoint genes not only control cell cycle progression in response to damage, but also play a role in accommodating DNA damage during replication.  相似文献   

5.
6.
7.
Perturbation of origin firing in chromosome replication is a possible cause of spontaneous chromosome instability in multireplicon organisms. Here, we show that chromosomal abnormalities, including aneuploidy and chromosome rearrangement, were significantly increased in yeast diploid cells with defects in the origin recognition complex. The cell cycle of orc1-4/orc1-4 temperature-sensitive mutant was arrested at the G2/M boundary, after several rounds of cell division at the restrictive temperature. However, prolonged incubation of the mutant cells at 37°C led to abrogation of G2 arrest, and simultaneously the cells started to lose viability. A sharp increase in chromosome instability followed the abrogation of G2 arrest. In orc1-4/orc1-4 rad9Δ/rad9Δ diploid cells grown at 37°C, G2 arrest and induction of cell death were suppressed, while chromosome instability was synergistically augmented. These findings indicated that DNA lesions caused by a defect in Orc1p function trigger the RAD9-dependent checkpoint control, which ensures genomic integrity either by stopping the cell cycle progress until lesion repair, or by inducing cell death when the lesion is not properly repaired. At semirestrictive temperatures, orc2-1/orc2-1 diploid cells demonstrated G2 arrest and loss of cell viability, both of which require RAD9-dependent checkpoint control. However, chromosome instability was not induced in orc2-1/orc2-1 cells, even in the absence of the checkpoint control. These data suggest that once cells lose the damage checkpoint control, perturbation of origin firing can be tolerated by the cells. Furthermore, although a reduction in origin-firing capacity does not necessarily initiate chromosome instability, the Orc1p possesses a unique function, the loss of which induces instability in the chromosome.  相似文献   

8.
In Saccharomyces cerevisiae, a DNA damage checkpoint in the S-phase is responsible for delaying DNA replication in response to genotoxic stress. This pathway is partially regulated by the checkpoint proteins Rad9, Rad17 and Rad24. Here, we describe a novel hypermutable phenotype for rad9Δ, rad17Δ and rad24Δ cells in response to a chronic 0.01% dose of the DNA alkylating agent MMS. We report that this hypermutability results from DNA damage introduction during the S-phase and is dependent on a functional translesion synthesis pathway. In addition, we performed a genetic screen for interactions with rad9Δ that confer sensitivity to 0.01% MMS. We report and quantify 25 genetic interactions with rad9Δ, many of which involve the post-replication repair machinery. From these data, we conclude that defects in S-phase checkpoint regulation lead to increased reliance on mutagenic translesion synthesis, and we describe a novel role for members of the S-phase DNA damage checkpoint in suppressing mutagenic post-replicative repair in response to sublethal MMS treatment.  相似文献   

9.
The RAD52 and RAD54 genes in the yeast Saccharomyces cerevisiae are involved in both DNA repair and DNA recombination. RAD54 has recently been shown to be inducible by X-rays, while RAD52 is not. To further investigate the regulation of these genes, we constructed gene fusions using 5' regions upstream of the RAD52 and RAD54 genes and a 3'-terminal fragment of the Escherichia coli beta-galactosidase gene. Yeast transformants with either an integrated or an autonomously replicating plasmid containing these fusions expressed beta-galactosidase activity constitutively. In addition, the RAD54 gene fusion was inducible in both haploid and diploid cells in response to the DNA-damaging agents X-rays, UV light, and methyl methanesulfonate, but not in response to heat shock. The RAD52-lacZ gene fusion showed little or no induction in response to X-ray or UV radiation nor methyl methanesulfonate. Typical induction levels for RAD54 in cells exposed to such agents were from 3- to 12-fold, in good agreement with previous mRNA analyses. When MATa cells were arrested in G1 with alpha-factor, RAD54 was still inducible after DNA damage, indicating that the observed induction is independent of the cell cycle. Using a yeast vector containing the EcoRI structural gene fused to the GAL1 promoter, we showed that double-strand breaks alone are sufficient in vivo for induction of RAD54.  相似文献   

10.
L Prakash 《Génome》1989,31(2):597-600
The RAD6 and RAD18 genes of Saccharomyces cerevisiae are required for postreplication repair of discontinuities occurring in newly synthesized DNA following exposure to uv light. In addition, rad6 mutants are highly defective in mutagenesis induced by uv and other DNA damaging agents and in sporulation. RAD6 encodes a protein of 172 amino acids with a highly acidic carboxyl terminus. Deletion of the carboxyl terminal 23 residues, 20 of which are acidic, has little or no effect on uv sensitivity or uv mutagenesis, but sporulation is greatly reduced. Addition of the first four residues of the polyacidic tail restores sporulation to 50% the level observed in RAD+/RAD+ diploids. RAD6 protein has been previously shown to be a ubiquitin-conjugating (E2) enzyme that attaches ubiquitin to histones H2A and H2B in vitro. Our experiments show that deletion of varying lengths of the polyacidic tail of RAD6 protein greatly reduces its ubiquitin-conjugating activity. The RAD18 encoded protein contains features which suggest that it binds DNA and nucleotides. Ten of the 12 cysteine residues occur in regions that could form zinc finger domains for nucleic acid binding. The other interesting feature in RAD18 protein is the presence of a putative nucleotide binding sequence. The possible in vivo functions of the RAD6 and RAD18 proteins are discussed.  相似文献   

11.
Eukaryotic cells may halt cell cycle progression following exposure to certain exogenous agents that damage cellular structures such as DNA or microtubules. This phenomenon has been attributed to functions of cellular control mechanisms termed checkpoints. Studies with the fission yeast Schizosaccharomyces pombe and mammalian cells have led to the conclusion that cell cycle arrest in response to inhibition of DNA replication or DNA damage is a result of down-regulation of the cyclin-dependent kinases (CDKs). Based on these studies, it has been proposed that inhibition of the CDK activity may constitute a general mechanism for checkpoint controls. Observations made with the budding yeast Saccharomyces cerevisiae, however, appear to disagree with this model. It has been shown that high levels of mitotic CDK activity are present in the budding yeast cells arrested in G2/mitosis as the result of DNA damage or replication inhibition. In this report, we show that a novel mutant allele of the CDC28 gene, encoding the budding yeast CDK, allowed cell cycle passage through mitosis and nuclear division in the presence of DNA damage and the microtubule toxin nocodazole at a restrictive temperature. Unlike the checkpoint-defective mutations in CDKs of fission yeast and mammalian cells, the cdc28 mutation that we identified was recessive and resulted in a loss of the CDK activity, including the Clb2-, Clb5-, and Clb6-associated, but not the Clb3-associated, CDK activities. Examination of several known alleles of cdc28 revealed that they were also, albeit partially, defective in cell cycle arrest in response to UV-generated DNA damage. These findings suggest that Cdc28 kinase in budding yeast may be required for cell cycle arrest resulting from DNA damage and disassembly of mitotic spindles.  相似文献   

12.
In Saccharomyces cerevisiae, Cdc13p is a single-stranded TG(1-3) DNA binding protein that protects telomeres and maintains telomere length. A mutant allele of CDC13, cdc13-1, causes accumulation of single-stranded TG(1-3) DNA near telomeres along with a G(2)/M cell cycle arrest at non-permissive temperatures. We report here that when the single-stranded TG(1-3) DNA is masked by its binding proteins, such as S. cerevisiae Gbp2p or Schizosaccharomyces pombe Tcg1, the growth arrest phenotype of cdc13-1 is rescued. Mutations on Gbp2p that disrupt its binding to the single-stranded TG(1-3) DNA render the protein unable to complement the defects of cdc13-1. These results indicate that the presence of a single-stranded TG(1-3) tail in cdc13-1 cells serves as the signal for the cell cycle checkpoint. Moreover, the binding activity of Gbp2p to single-stranded TG(1-3) DNA appears to be associated with its ability to restore the telomere-lengthening phenotype in cdc13-1 cells. These results indicate that Gbp2p is involved in modulating telomere length.  相似文献   

13.
14.
15.
C Kühne  P Linder 《The EMBO journal》1993,12(9):3437-3447
Two new B-type cyclin genes from Saccharomyces cerevisiae, called CLB5 and CLB6, are located in a tail to tail arrangement adjacent to the G2/M phase promoting cyclins CLB2 and CLB1, respectively. These genomic cyclin arrays are flanked by tRNAs and repeated sequences of Ty elements suggesting an intrachromosomal gene duplication followed by an interchromosomal gene duplication. Based on their deduced protein sequence the CLB5 and CLB6 genes form a new pair of B-type cyclins. They are most related to each other and then to the deduced protein sequence of their adjacent genes CLB1 and CLB2. Both genes are periodically expressed, peaking early in the cell cycle. Loss of function mutants are viable, but clb5- mutants exhibit a delay in S phase whereas clb6- mutants show a delay in late G1 and/or S phase. The clb5 mutant phenotype is somewhat more pronounced in a double null mutant. Both cyclins have the potential to interact with the p34CDC28 kinase in vivo.  相似文献   

16.
In eucaryotic cells chromosomes must be fully replicated and repaired before mitosis begins. Genetic studies indicate that this dependence of mitosis on completion of DNA replication and DNA repair derives from a negative control called a checkpoint which somehow checks for replication and DNA damage and blocks cell entry into mitosis. Here we summarize our current understanding of the genetic components of the cell cycle checkpoint in budding yeast. Mutants were identified and their phase and signal specificity tested primarily through interactions of the arrest-defective mutants with cell division cycle mutants. The results indicate that dual checkpoint controls exist in budding yeast, one control sensitive to inhibition of DNA replication (S-phase checkpoint), and a distinct but overlapping control sensitive to DNA repair (G2 checkpoint). Six genes are required for arrest in G2 phase after DNA damage (RAD9, RAD17, RAD24, MEC1, MEC2, and MEC3), and two of these are also essential for arrest in S phase when DNA replication is blocked (MEC1 and MEC2).  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号