首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 78 毫秒
1.
湖泊水动力对水生植物分布的影响   总被引:3,自引:0,他引:3  
水动力作为湖泊水生植物恢复的关键限制性因子,其对水生植物的影响机制是当前迫切需要关注的科学问题。从水动力作用下水生植物的分布、水生植物受力以及水生植物自身机械抗性3个方面系统梳理了当前的研究方法与结论。结果表明,水生植物在河流湖泊中的丰度、空间分布与水动力密切相关,各物种对水流胁迫表现出不同的响应;植物在水动力作用下的受力观测和研究主要依赖模拟试验,通过计算定量表征不同物理外型物种在水动力作用下的受力,明确了生物量和植物系数等影响受力的关键参数,为不同塑形物种受力的对比分析提供了研究方法;植物机械抗性主要基于测力装置观测,通过断裂应力、弯曲力等生物力学参数表征。在当前研究背景下,水生植物尤其是沉水植物在湖泊中的实际受力情况依然是研究难点,需要借助新的观测手段和研究方法来阐明植物在复杂的湖泊水动力环境下的实际受力特征。此外,还需要进一步开展水生植物在湖泊中的实际受力与植物自身机械抗性的耦合研究,这是开展水生植物响应湖泊水动力机理研究的关键。  相似文献   

2.
杨凤  张跃环  闫喜武  张国范 《生态学报》2008,28(5):2052-2052~2059
在温度18.2~20.6℃,盐度23~25,pH 7.96~8.14 的条件下,研究了饥饿和再投喂对青蛤幼虫生长、存活及变态的影响.结果表明:在饥饿状态下,幼虫具有生长现象,且随着饥饿时间的延长,壳长逐渐接近一个常值而不再生长;幼虫可以由面盘幼虫发育到足面盘幼虫.随饥饿时间延长存活率下降;且足面盘幼虫及其变态规格、单水管稚贝规格随着饥饿时间延长而减小;幼虫的不可逆点(PNR)为12.48d;延迟变态时间长达12.7d.饥饿后再投喂相同的时间,幼虫能够恢复生长,存活的幼虫能够变态;稚贝表现出补偿生长现象,以壳长作为衡量标准,完全补偿生长能力依次为:S10>S11>S12>S1>S2>S3;超补偿生长能力依次为:S9>S8>S7>S6>S5>S4.  相似文献   

3.
沉水植物生长影响因子研究进展   总被引:42,自引:1,他引:41  
王华  逄勇  刘申宝  马璇 《生态学报》2008,28(8):3958-3968
沉水植物恢复是近年来国内外广泛关注的热点.回顾了沉水植物恢复研究的总体情况,通过对影响沉水植物生长环境因子的系统分析与总结得出:光照强度对沉水植物生长起着主要限制作用;营养盐、底质、悬浮物、水流、温度对沉水植物生长影响较为明显,各因子都存在某一适宜取值区间,满足沉水植物的最佳生长,就不同类型沉水植物及在其不同生长阶段,该取值区间也有所变化;着生藻类、重金属、pH等因子也会对沉水植物生长产生一定影响,但其作用程度相对上述因子较低.目前研究中存在的问题有:(1)相关环境因子对沉水植物生长影响机理的动态、定量化研究不足;(2)考虑到多项因子的内在联系与相互作用,开展的综合性研究较少;(3)室内实验较多,野外实验较少,实验结果不能有效指导野外实践.  相似文献   

4.
1. The impact of groundwater seepage on the growth of submerged macrophytes was investigated in experiments on the isoetid Littorella uniflora and the elodeid Myriophyllum alterniflorum both in the laboratory and in the field. Isoetids rely mostly on sediment‐derived CO2 and nutrients via root uptake, whereas elodeids acquire their inorganic carbon and nutrients from the water column. We thus hypothesised that L. uniflora would respond positively to seeping ground water as it should improve both CO2 and nutrient supply. 2. Laboratory experiments were conducted by percolating vegetated cores containing natural sediment or technical sand with artificial ground water of high CO2 concentrations and with either high or low levels of nutrients. Field experiments were conducted in the oligotrophic Lake Hampen, Denmark, with custom‐built seepage‐growth chambers that permitted a near‐natural flow‐through of seeping ground water. Chambers with a solid bottom, and thus no flow‐through of seeping ground water, served as controls in both laboratory and field experiments. In the field, seepage chambers were installed at a site with relatively high seepage fluxes (ground water from forest catchment), at a site with much lower seepage fluxes but with higher nutrient concentrations (ground water from agricultural catchment) and at a reference site with no net discharge or recharge of ground water. 3. Positive growth responses were observed in the field at transects with high groundwater discharge compared to the control chambers with no seepage. No growth response was observed at the reference transect with low or alternating direction of groundwater seepage. The growth rates of L. uniflora in the field were significantly higher in seepage treatments compared to control treatments, and final plant mass was up to 70% higher than that for plants where seepage was excluded. In areas with high groundwater discharge, a strong positive correlation was found between groundwater seepage fluxes, growth rates, and final plant mass for L. uniflora, while there was no such relationship at the reference transect. The growth of M. alterniflorum was also significantly affected by groundwater seepage, but to a lesser degree than L. uniflora. Laboratory experiments generally showed the same trend for both L. uniflora and M. alterniflorum, and the positive influence of seeping ground water was apparently related to increased inorganic carbon supply and, to a lesser degree, improved nutrient availability. 4. Groundwater discharge results in enhanced growth of isoetids and to some extent elodeids inhabiting a groundwater‐fed softwater lake. We propose that the shallow dense vegetation present where most of the discharge takes place acts as a biological filter that retains nutrients that otherwise would end up in the water column and could result in increased algal growth.  相似文献   

5.
Influence of aquatic macrophytes on phosphorus cycling in lakes   总被引:19,自引:5,他引:14  
Emergent macrophytes take up their phosphorus exclusively from the sediment. Submerged species obtain phosphorus both from the surrounding water and from the substrate, but under normal pore and lake water phosphorus concentrations, substrate uptake dominates. Release of phosphorus from actively growing macrophytes (both submerged and emergent) is minimal and epiphytes obtain phosphorus mainly from the water. Decaying macrophytes may act as an internal phosphorus source for the lake and add considerable quantities of phosphorus to the water. A large part of the released phosphorus is often retained by the sediments. In perennial macrophytes the amount of phosphorus released from decaying shoots is dependent on the degree of phosphorus conservation within the plant. Macrophyte stands may also be a permanent phosphorus sink due to burial of plant litter. Macrophytes affect the chemical environment (oxygen, pH), which in turn has effects on the phosphorus cycling in lakes. However, the impact of aquatic macrophytes on whole-lake phosphorus cycling is largely unknown. Controlled full-scale harvesting, herbicide or herbivory experiments are almost totally lacking. Emergent macrophytes respond positively to eutrophication, but fertilization experiments have shown that nitrogen rather than phosphorus may be the key element. Submerged macrophytes are adversely affected by a large increase in the external phosphorus input to a lake. This effect may be caused by epiphyte shading, phytoplankton shading or deposition of unfavourable sediments.  相似文献   

6.
Distribution and plant mass of aquatic macrophytes, and their relation to environmental conditions was studied in the submontane-colline Slatina river in 2004. Diversity of macrophytes was low, only 8 vascular plants, 3 mosses and group Algae filamentosae were found. Myriophyllum spicatum is dominant species, Fontinalis antipyretica, Rhynchostegium riparioides and Algae filamentosae are frequent. Interactions between flow class, bed material, depth of water and the first three mentioned macrophytes, as well as Jungermannia leiantha were detected. Sparganium erectum prefers more antrophogenic conditions and Myriophyllum spicatum prefers the light. According to cluster analysis, three distinct and ecologically well separated parts of the river were identified. Based on Reference index, poor ecological status for the studied part of the Slatina river was estimated.  相似文献   

7.
It is important that legislation on water quality issues of freshwaters is not in conflict with nature conservation purposes. So far, it is however unknown how the assessment of ecological status according to for example the Water Framework Directive (WFD) of the European Community relates to the status of lakes according to the Habitat Directive (HD) or to national environmental objectives including, e.g., the protection of important wetland areas and red-listed species. We used lake macrophyte classification schemes of Norway, Sweden, and Finland and a total of 1,014 lakes to evaluate the possible conflict between these directives and national legislation. The classification schemes represent mainly trophic indices penalizing lakes with elevated phosphorous concentrations. In general, high ecological status according to the WFD did not mean high number of red-listed species or high status according to the HD or other national environmental objectives. In Sweden 78%, in Norway 47%, and in Finland 29% of lakes with red-listed species were classified as lakes of moderate or worse ecological status based on the macrophyte classification scheme. These lakes thus did not fulfill the demands of the WFD. Restoration of surface water toward fulfilling the demands requires in practice a reduction of the trophic status. This might potentially result in for example the loss of red-listed species. To avoid such potential conflicts, we primarily suggest revising the national quality assessment systems toward implicitly incorporating nature conservation aspects, e.g., the number of red-listed species in a multi-metric assessment system.  相似文献   

8.
《Aquatic Botany》2007,86(3):260-268
A study was conducted to determine the effect of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) on nine submersed macrophyte species. The first objective of the study was to investigate the sensitivity of various endpoints in macrophyte toxicity tests. A second objective was to investigate the implications of hormesis in the risk assessment of 2,4-D. 2,4-D was applied in concentrations ranging from 10 to 3000 μg L−1. Endpoints determined 4 weeks after the start of the treatment were based on shoot and root growth in water. The EC50s were calculated using models excluding and including a parameter describing hormesis. Results indicated that the total length of the roots can be regarded as a sensitive endpoint for the response of a macrophyte to 2,4-D. For the tested rooted macrophyte species, the EC50 values for the length and number of the roots ranged from 92 to 997 and from 112 to 1807 μg L−1, respectively. At low concentrations (10 and 30 μg L−1), stimulation of some of the endpoints (hormesis) was found for several of the species. Although hormesis may have ecological implications, its importance for the ecological risk assessment of 2,4-D in this study was limited.  相似文献   

9.
H. M. Dale 《Hydrobiologia》1986,133(1):73-77
In stratified lakes with high light penetration, the maximum depth at which macrophytes occur is frequently limited by temperature. At this depth a variety of species may be found. On the other hand, when the clarity of water limits the light penetration and the temperature at depth is sufficient for good plant growth, the plants occurring at greatest depth are ones that do not require photosynthetic oxygen for root growth. Such plants include the Charales, Isoetes, Utricularia and Ceratophyllum.  相似文献   

10.
The occurrence of aquatic macrophytes was studied in a northern transition area of the Baltic Sea; the Northern Quark, Gulf of Bothnia. In the area there is a gradual, marked change in environmental conditions, the most prominent of which is a decrease in salinity from 5.0% in the Bothnian Sea to 3.5% in the Bothnian Bay. In all, 40 species of macrophytes were observed; 10 fucophyceans, 10 bangiophyceans, 8 chlorophyceans, 3 charophyceans, 1 tribophycean, 1 nostocophycean, 6 phanerogams and 1 water moss. 26 of the observed species were of marine and 14 of lacustrine origin. There was a clear change in species composition and community structure from south to north over the area. The vegetation at the southernmost localities had a marine character, with belt-forming Fucus vesiculosus and a comparatively diverse flora of macroalgae. Further north, an ephemeral, lacustrine vegetation dominated by benthic diatoms and Cladophora aegagropila prevailed. The ratio marine: lacustrine species decreased from 4.2 to 1 when comparing a southern and a northern sub-area of the Northern Quark. The species observed include 57 % of the marine macrophytes noted in the Aland and Archipelago Seas (N Baltic Proper) during the past two decades. Two marine species, Aglaothamnion roseum and Ahnfeltia plicata , are reported for the first time from the Northern Quark. This comprises a northern extension of their distribution limit with approximately 300 km.  相似文献   

11.
涡河水生植被特征及分布成因   总被引:1,自引:0,他引:1  
覃红燕  李景德  邹冬生  李峰 《生态学杂志》2012,31(11):2781-2787
通过野外调查及室内测定,运用TWINSPAN聚类和CCA排序等方法对淮河流域涡河水生植物的组成、群落类型进行了研究,并探讨了影响水生植物分布的关键环境要素.结果表明:涡河共有水生植物27种,隶属于20科23属,其中以沉水植物和挺水植物居多(占总数的74%).涡河水生植物可划分为8个群落类型,即针蔺+藨草群落(Form.Eleocharis congesta+Scirpus trigueter)、藨草+喜旱莲子草群落(Form.S.trigueter+Alternanthera philoxeroides)、藨草群落(Form.S.trigueter)、金鱼藻群落(Form.Ceratophyllum demersum)、喜旱莲子草群落(Form.A.philoxeroides)、芦苇+喜旱莲子草群落(Form.Phragmites australis +A.philoxeroides)、荇菜群落(Form.Nymphoides peltatum)、菱+萍蓬草群落(Form. Trapa bispinosa+Nuphar pumilum).各群落间水体铵态氮、水体硝态氮、水体总磷、水深等环境因子变异较大.CCA排序结果表明,水体理化性质如硝态氮含量、磷酸根离子及总磷是影响该区水生植物分布的关键因素.  相似文献   

12.
光衰减及其相关环境因子对沉水植物生长影响研究进展   总被引:2,自引:0,他引:2  
吴明丽  李叙勇 《生态学报》2012,32(22):7202-7212
光衰减对沉水植物的生长具有至关重要的影响。系统归纳总结了光衰减及其相关环境因子对沉水植物生长的影响,指出:光因子是沉水植物生长的第一环境要素,水体中的有色可溶性有机质、浮游植物叶片细胞中的叶绿素和悬浮颗粒物以及水体本身,对光穿透水体时光强的衰减有着直接的影响,是影响沉水植物最重要的光衰减水质参数。其他环境因子如营养盐、沉积物和流水动力学等因素,则会直接或间接影响光衰减水质参数,进而影响水体透明度和浑浊度,影响沉水植物的光合作用,是影响沉水植物光衰减的间接环境因子。提出了研究中重点关注的几个问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号