首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
G Katsuura  S Hsiao  S Itoh 《Peptides》1984,5(3):529-534
An open field apparatus was used to assess the effect of proglumide, a selective antagonist of cholecystokinin octapeptide (CCK-8), to block the behavioral effect of CCK-8 in rats. Intracerebroventricular (ICV) injection of CCK-8 (0.5 to 2 micrograms) was effective in suppressing general exploratory activities and this effect was blocked by proglumide at doses of 2 to 5 micrograms administered ICV or 1 mg/kg administered subcutaneously. The effect of peripherally administered CCK-8 (10 micrograms/kg) was blocked by peripherally administered proglumide at a dose of 2 mg/kg but not by centrally administered proglumide at a dose of 5 micrograms/rat. The behavioral effect of CCK-8 was thus clearly blocked by proglumide.  相似文献   

2.
It has been shown in the behavioural experiments that combined pretreatment with haloperidol (0.25 mg/kg) and caerulein (40 micrograms/kg), and to a lesser extent pretreatment with caerulein alone caused long-term reversal of amphetamine (2 mg/kg) induced hyperexcitability in rats. Administration of proglumide (50 mg/kg), an antagonist of CCK-8 receptors, did not reverse long-term antiamphetamine effect of caerulein. In mice pretreatment with caerulein (50 and 100 micrograms/kg) alone or in combination with haloperidol (0.25 mg/kg) caused hypersensitivity to the behavioural effect of amphetamine (3 mg/kg). Intraventricular (I ng), but not systemic (100-500 micrograms/kg) administration of caerulein selectively antagonized seizures in mice induced by intraventricular administration of quinolinic acid (5 micrograms) and N-methyl-D-aspartate (0.2 microgram). Pretreatment with proglumide (50 mg/kg) reversed the anticonvulsive effect of caerulein in mice. In rats, caerulein failed to affect the seizures caused by intraventricular administration of quinolinic acid. The results of the present study demonstrate the existence of obvious interspecies differences in the behavioural effects of caerulein, the agonist of CCK-8 receptors, in mice and rats.  相似文献   

3.
Parkinson's disease (PD) is a neurodegenerative disease characterized by the selective loss of dopamine (DA) neurons of the substantia nigra pars compacta (SNc). The events, which trigger and/or mediate the loss of nigral DA neurons, however, remain unclear. Neuroleptic-induced catalepsy has long been used as an animal model for screening drugs for Parkinsonism. Administration of haloperidol (1 mg/kg, ip) or reserpine (2 mg/kg, ip) significantly induced catalepsy in mice. BR-16A (50 and 100 mg/kg, po), a polyherbal formulation or ashwagandha (50 and 100 mg/kg, po), significantly reversed the haloperidol or reserpine-induced catalepsy. The results indicate that BR-16A or ashwagandha has protective effect against haloperidol or reserpine-induced catalepsy and provide hope that BR-16A could be used in preventing the drug-induced extrapyramidal side effects and may offer a new therapeutic approach to the treatment of Parkinson's disease.  相似文献   

4.
Dextromethorphan, a noncompetitive blocker of N-methyl-D- aspartate (NMDA) type of glutamate receptor, at 7.5-75 mg/kg, ip did not induce oral stereotypies or catalepsy and did not antagonize apomorphine stereotypy in rats. These results indicate that dextromethorphan at 7.5-75 mg/kg does not stimulate or block postsynaptic striatal D2 and D1 dopamine (DA) receptors. Pretreatment with 15 and 30 mg/kg dextromethorphan potentiated dexamphetamine stereotypy and antagonised haloperidol catalepsy. Pretreatment with 45, 60 and 75 mg/kg dextromethorphan, which release 5-hydroxytryptamine (5-HT), however, antagonised dexamphetamine stereotypy and potentiated haloperidol catalepsy. Apomorphine stereotypy was not potentiated or antagonised by pretreatment with 7.5-75 mg/kg dextromethorphan. This respectively indicates that at 7.5-75 mg/kg dextromethorphan does not exert facilitatory or inhibitory effect at or beyond the postsynaptic striatal D2 and D1 DA receptors. The results are explained on the basis of dextromethorphan (15-75 mg/kg)-induced blockade of NMDA receptors in striatum and substantia nigra pars compacta. Dextromethorphan at 15 and 30 mg/kg, by blocking NMDA receptors, activates nigrostriatal dopaminergic neurons and thereby potentiates dexampetamine stereotypy and antagonizes haloperidol catalepsy. Dextromethorphan at 45, 60 and 75 mg/kg, by blocking NMDA receptors, releases 5-HT and through the released 5-HT exerts an inhibitory influence on the nigrostriatal dopaminergic neurons with resultant antagonism of dexampetamine stereotypy and potentiation of haloperidol catalepsy.  相似文献   

5.
H Wachtel  W Kehr  G Sauer 《Life sciences》1983,33(26):2583-2597
2-Bromolisuride (2-Br-LIS), a derivative of the ergot dopamine (DA) agonist lisuride, was investigated in rodents in comparison with the DA antagonist haloperidol with regard to its influence on DA related behaviour, cerebral DA metabolism and prolactin (PRL) secretion. 2-Br-LIS produced catalepsy in mice (ED50 3.3 mg/kg i.p.), antagonized apomorphine-induced stereotypies in mice (ED50 0.4 mg/kg i.p.), antagonized DA agonist-induced stereotypies in rats (0.1-1.56 mg/kg i.p.), inhibited locomotor activity in rats (0.025-6.25 mg/kg i.p.), antagonized the hyperactivity produced by various DA agonists in rats (0.025-6.25 mg/kg i.p.) and inhibited the apomorphine-induced hypothermia in mice (0.05-0.78 mg/kg i.p.). 2-Br-LIS (0.03-10 mg/kg i.p.) stimulated DA biosynthesis and DOPAC formation in the striatum and DA rich limbic system of rats, but had no effect on serotonin turnover. In striatum and limbic forebrain of gamma-butyrolactone-pretreated rats 2-Br-LIS reversed the apomorphine-induced inhibition of DOPA accumulation. 2-Br-LIS (0.03 - 3 mg/kg) enhanced PRL secretion in intact male rats. These findings indicate DA antagonistic properties of 2-Br-LIS presumably due to blockade of central pre- and postsynaptic DA receptors being of approximately the same order of potency as haloperidol. 2-Br-LIS is the first ergot compound with definite antidopaminergic properties suggesting its potential usefulness as a neuroleptic.  相似文献   

6.
W H Hsu  D D Schaffer  D C Dyer 《Life sciences》1986,39(11):1021-1026
Recent investigations have suggested that the alpha 2-adrenoreceptor agonist B-HT 920 is also a dopamine (DA) agonist with a selectivity for presynaptic receptors. In the present study, the emetic effect of B-HT 920 was investigated. Intravenous injections of B-HT 920 (0.32-10.0 micrograms/kg) and a DA2-agonist apomorphine (3.2-100.0 micrograms/kg) caused dose-dependent emesis. The ED50 of B-HT 920 and apomorphine were 3.2 and 12.3 micrograms/kg, respectively. When haloperidol (10.0-24.5 micrograms/kg i.v.), a DA2-antagonist, was given 5 minutes before B-HT 920 (10 micrograms/kg) or apomorphine (32 micrograms/kg), it caused a dose-dependent prevention of B-HT 920- and apomorphine-induced emesis. The ED50 of haloperidol in preventing the emetic effect of both drugs was identical (13.5 micrograms/kg). In contrast, haloperidol (32 micrograms/kg i.v.) did not prevent the emetic effect of ouabain (40 micrograms/kg i.v.). Neither did yohimbine (0.1 mg/kg i.v.), an alpha 2-adrenoreceptor antagonist, prevent the emetic effect of B-HT 920 (10 micrograms/kg). These results suggest that B-HT 920, acting like apomorphine, induces emesis by activating DA2-receptors probably in the chemoreceptor trigger zone of the area postrema.  相似文献   

7.
Subcutaneous administration of caerulein (100-500 micrograms/kg) significantly reduced the development of picrotoxin (8 mg/kg) seizures in male mice. The same doses of caerulein inhibited 3H-flunitrazepam binding in in vivo experiments. Proglumide, an antagonist of cholecystokinin receptors, in low dose (5 mg/kg) potentiated the effects of caerulein (100 micrograms/kg), whereas the administration of proglumide in high dose (25 mg/kg) reduced the action of caerulein on 3H-flunitrazepam binding and picrotoxin seizures. Caerulein (5-1000 nM) decreased 3H-flunitrazepam binding in in vitro experiments only after supplementation of the binding medium with 120 mM NaCl and 5mM KCl. The results suggest the possible interaction of caerulein with chloride ionophor. It seems probable that the direct interaction of caerulein with chloride ionophor in involved in the inhibitory effect of caerulein on picrotoxin seizures and 3H-flunitrazepam binding.  相似文献   

8.
D Deupree  S Hsiao 《Peptides》1987,8(1):25-28
Rats were conditioned to avoid a darkened chamber using electric footshock (0.25 mA for 2 sec). Cholecystokinin octapeptide (CCK-8), a CCK-8 antagonist proglumide, or 0.9% NaCl solution was injected immediately following the footshock to study the effect upon passive avoidance behavior. The passive avoidance behavior was observed one day following the conditioning footshock and treatment. CCK-8 produced a reduction of the passive avoidance latency of rats at doses ranging from 30 micrograms/kg to 500 micrograms/kg. Proglumide (5 mg/kg) was able to block the CCK-8 effect on rat passive avoidance conditioning. Proglumide by itself at a dose of 2 mg/kg decreased the latency to enter the darkened chamber. Endogenous CCK-8 activity may be involved in passive avoidance conditioning in rats.  相似文献   

9.
Peripheral (50 mg/ml) or central (50 micrograms/microliter) injections of proglumide were made into Sprague-Dawley rats which displayed satiety-like responses after the peripheral (100 micrograms/kg) or central (50 ng in 1 microliter) administration of cholecystokinin (CCK). The satiety produced by CCK injection into the lateral hypothalamus, area postraema and ventromedial hypothalamus was significantly reversed by proglumide injections into these areas during a 4 h food intake test. Peripheral injection of proglumide after central or peripheral CCK injection did not modify this type of CCK-induced satiety. Central proglumide injection produced a reliable decrease in water intake and this is compatible with previous findings which describe the stimulation of water intake after central gastrin administration. These results suggest that various central and peripheral mechanisms which are involved in the regulation of appetite may function independently as a 'failsafe' system.  相似文献   

10.
In anaesthetized dogs renal function was investigated in four successive 20-min periods in four experimental series. (1) In the first series following the first period (serving as control) 2.5 micrograms/kg/min of dopamine (DA) dissolved in 0.5 ml/min of Ringer's solution was infused into the left renal artery (period 2), than during periods 3 and 4. It was found that first (period 2) and second (period 3) doses of DA induced a significant decrease of about 20-30% in renal vascular resistance, and an increase of about 15-25% in renal blood flow. At the same time, systemic arterial blood pressure fell by 10%. The other investigated parameters of the left kidney (Cinulin, CPAH, sodium, potassium and water excretion) did not differ from the respective parameters of the intact right kidney. (2) In the second experimental series following the first period (prior to period 2) 1.0 mg/kg of the DA antagonist EGYT 2509 was administered intravenously. Prior to the period 3 again 1.0 mg/kg of EGYT 2509 and prior to period 4 2.0 mg/kg of EGYT 2509 was given intravenously. During periods 2 through 4 2.5 micrograms/kg/min of DA was infused into the left renal artery. It could be ascertained that EGYT 2509 abolished the renal effects of DA while not inducing any decrease in arterial blood pressure. (3) In the third experimental series, following the control period, prior to periods 2,3 and 4, 1.0 mg/kg, 1.0 mg/kg and 2.0 mg/kg chlorpromazine respectively, was administered i.v. followed by the infusion of DA into the left renal artery. After the administration of chlorpromazine arterial blood pressure and renal vascular resistance fell concomitantly and DA failed to induce any further changes in these parameters. According to our experiments chlorpromazine abolishes the effect of DA on kidney function. (4) In the fourth series, prior to DA infusion the dogs were given 0.5 mg/kg (period 2) then again 0.5 mg/kg and finally 1.0 mg/kg of haloperidol intravenously. Haloperidol decreased arterial blood pressure as well as renal vascular resistance, thus renal blood flow did not change. Renal blood flow could then be increased by DA infused into the left renal artery. It seems that haloperidol could not abolish the vascular effects of DA in the kidney. Our experiments indicate that substance EGYT 2509 possesses the most marked dopaminergic antagonistic effect, chlorpromazine had also been effective, while haloperidol had proved to be practically ineffective.  相似文献   

11.
A new simple mouse assay for the in vivo evaluation of CCK antagonists which is based upon visual determination of the gastric emptying of a charcoal meal is described. CCK-8 (24 micrograms/kg s.c.) but not various other peptide and nonpeptide agents effectively inhibited gastric emptying in this test system. The effect of CCK-8 was antagonized by established peripheral CCK antagonists but not representative agents of various other pharmacological classes. The rank order of potency of the CCK antagonists were: L-364,718 (ED50 = 0.01 mg/kg, i.v.; 0.04 mg/kg, p.o.) greater than Compound 16 (ED50 = 1.5 mg/kg, i.v.; 2.0 mg/kg p.o.) greater than asperlicin (ED50 = 14.8 mg/kg i.v.) greater than proglumide (ED50 = 184 mg/kg i.v.; 890 mg/kg, p.o.). Duration of action studies based upon ED50 values determined at various time intervals after oral administration showed that L-364,718 and proglumide are considerably longer acting than Compound 16. Asperlicin (ED50 greater than 300 mg/kg, p.o.) was ineffective as a CCK antagonist when administered orally. These data provide the first direct comparisons of the in vivo potencies of current CCK antagonists and demonstrate the utility of a new simple mouse assay for the in vivo characterization of peripheral CCK antagonists.  相似文献   

12.
Intravenous administration of l-stepholidine (SPD), a dopamine (DA) receptor antagonist, in-creased the firing rate of DA neurons located in the ventral tegmental area (VTA) and substantia nigra pars compacta (SNC) in both anaesthetized and paralyzed rats. However, with the increase of dose, SPD selectively inhibited the fir-ing activity of DA neurons in the VTA but not in the SNC. The inhibition was reversed by the DA agonist apomor-phine (APO), suggesting that it may be via the mechanism of depolarization inactivation (DI). In rats, chronic admin-istration of SPD for 21 d dose-dependently decreased the number of spontaneously active DA neurons in the VTA, of which effect was reversed by APO (i. v. ). In contrast, the same treatment failed to affect the population of DA neu-rons in the SNC. Similarly, the acute treatment of SPD also decreased the number of spontaneously firing DA neurons in the VTA, but not in the SNC. SPD per se only induced very weak catalepsy. Its catalepsy which was not in pro-port  相似文献   

13.
Intravenous administration ofl-stepholidine (SPD), a dopamine (DA) receptor antagonist, increased the firing rate of DA neurons located in the ventral tegmental area (VTA) and substantia nigra pars compacta (SNC) in both anaesthetized and paralyzed rats. However, with the increase of dose, SPD selectively inhibited the firing activity of DA neurons in the VTA but not in the SNC. The inhibition was reversed by the DA agonist apomorphine (APO), suggesting that it may be via the mechanism of depolarization inactivation (DI). In rats, chronic adrninistration of SPD for 21 d dose-dependently decreased the number of spontaneously active DA neurons in the VTA, of which effect was reversed by APO (i. v.). In contrast, the same treatment failed to affect the population of DA neurons in the SNC. Similarly, the acute treatment of SPD also decreased the number of spontaneously firing DA neurons in the VTA, but not in the SNC. SPD per se only induced very weak catalepsy. Its catalepsy which was not in proportion to dosage was only observed in the dose range of 10–40 mg/kg and lasted 15 min. SPD effectively antagonized the APO (2 mg/kg, i. p.)-induced stereotypy.The above-mentioned results suggest that SPD selectively inactivates the DA neurons in the VTA not in the SNC. SPD may associate with a low incidence of extrapyramidal side-effects and may be ranked as a promising compound for searching for a new kind of atypical neuroleptics.  相似文献   

14.
To investigate the effect of haloperidol (HAL) on second messengers in the brain striatum, the concentrations of cAMP and inositol trisphosphate (IP-3) were measured in the striatum of rats in vivo after intravenous administration of HAL, and their concentrations were compared with the severity of catalepsy and changes in dopamine (DA) metabolism in the striatum. Catalepsy developed both in the animals treated with 5 mg/kg and those with 0.5 mg/kg of HAL, but it appeared earlier, and the period of severe catalepsy was longer in the former than in the latter. In the animals treated with 5 mg/kg of HAL, DOPAC and HVA began to increase at 20 min after administration, and their percent increases were correlated with the severity of catalepsy. In the 5 mg/kg animals, both cAMP and IP-3 increased. The IP-3 showed a delayed peak but a greater increase as compared with the cAMP. In the 0.5 mg/kg animals, only IP-3 increased. These findings suggest that HAL might affect not only the adenylate cyclase system but also the phosphoinositide response in the striatum. Moreover, the changes in the phosphoinositide response might be secondarily induced by the blocking of D-2 receptors by HAL.  相似文献   

15.
Reserpine-induced catalepsy is a widely accepted animal model of Parkinson's disease. In the present study reserpine (2.5 mg/kg, ip) 20 hr and alpha-mehyl-para-tyrosine (AMPT; 200 mg/kg, ip), one hour before the experiment induced significant catalepsy in rats as assessed by bar test. There was a significant increase in the time spent on the bar in bar test as compared to the control untreated rats. L-dopa (100 mg/kg, ip) and carbidopa (10 mg/kg, ip) combination, a conventional therapy was less effective in reversing reserpine-induced catalepsy. Pretreatment with FK506, a neuroprotectant (0.5-2 mg/kg, po) not only dose dependently reduced the catalepsy in reserpine-treated rats but a lower dose (1 mg/kg) potentiated the motor stimulant actions of sub threshold dose of L-dopa (100 mg/kg, ip) and carbidopa (10 mg/kg, ip) combination. Anticataleptic effect of FK506 was blocked dose dependently by specific D2 receptor blocker sulpiride (25-100 mg/kg, ip). In conclusion, the findings of the present study suggest that FK506 has an indirect modulatory action on the dopamine D2 receptors. FK506 being a neuroprotectant, could be used as an effective adjunct to L-dopa for the treatment of neuroleptic-induced extrapyramidal side effects.  相似文献   

16.
In rat brain cortex, haloperidol initiates the long-term potentiation of K(+)-induced Ca(2+)-dependent noradrenaline (NA) and dopamine (DA) secretion in vitro and in vivo. In both cases, the long-term potentiation is caused by the long-term increase in catecholamine content in the NA and DA terminals, as it has been shown in cortical tangential slices. Acute intraperitoneal haloperidol injection (2.5 mg/kg) evokes catalepsy and increases the content of NA and DA in the brain structures with localization of catecholamine receptors on terminals. This increase appears to be caused, predominantly, by modification of the terminal DA receptors, since only a trend to catecholamine increase is observed in the brain structures with a mixed type of NA and DA receptor localization (on somata and terminals). It is suggested that the long-term and diffuse action of haloperidol after its acute administration consists in the anxiogenic reaction and consolidation of catalepsy without an additional procedure of training and in the absence of unconditioned stimulus.  相似文献   

17.
In five conscious dogs we studied the effect of proglumide, a cholecystokinin (CCK) antagonist, on caerulein-stimulated pancreatic secretion and release of pancreatic polypeptide (PP). Graded doses of caerulein (15-240 ng/kg per h) were infused intravenously. Experiments were repeated with a fixed infusion of proglumide (40 mg/kg per h). Release of PP following increasing doses of caerulein was significantly inhibited by proglumide (P less than 0.01). However, proglumide did not significantly affect caerulein-stimulated pancreatic protein secretion. Proglumide might be useful in defining the physiological role of CCK.  相似文献   

18.
Transdihydrolisuride (TDHL), a 9, 10-dihydrogenated analogue of the ergot dopamine (DA) agonist lisuride (LIS), was investigated for its influence on central dopaminergic functions in rats and mice after single i.p. administration. TDHL (0.39–25 mg/kg) unexpectedly induced catalepsy and antagonized apomorphine-induced stereotypes in rats; it was approx. 3–5 times less potent than the DA antagonist haloperidol. TDHL (0.025–6.25 mg/kg) caused hypokinesia and antagonized the apomorphine-induced hyperactivity in rats. Pre-treatment with TDHL (0.78–12.5 mg/kg) which per se did not alter thermoregulation at room temperature, antagonized the hypothermia induced by the DA agonist apomorphine (5 mg/kg i.p.) in mice. These DA antagonistic properties contrasted with the prolactin (PRL) lowering effect of TDHL (0.01–10 mg/kg p.o.) in reserpinized female rats thus indicating DA agonist function. PRL inhibition tended to be longer lasting (>8h) than after LIS (0.01–1 mg/kg p.o.) with comparable potency. In healthy volunteers TDHL (0.2–1 mg p.o.) effectively lowered PRL levels with similar potency but with a markedly longer duration of action than LIS (>24h after 0.5 mg TDHL). In contrast to the side effects after acute LIS treatment, no comparable adverse reactions such as nausea, emesis or postural hypotension typical for DA agonists could be observed with effective PRL lowering doses of TDHL. The unique profile of TDHL on DA functions suggests its usefulness as a potent, longlasting PRL inhibitor with less unwanted effects. The behavioural findings indicate the potential usefulness of TDHL as a neuroleptic, which due to its partial DA agonistic action, should lack typical extrapyramidal or neuroendocrine side effects of classic DA receptor blocking agents. Possible implications of the dual function of TDHL upon central DA receptors are discussed with regard to the incidence of side effects or selectivity of action for other conceivable therapeutic indications.  相似文献   

19.
Thyroid dysfunction is associated with mental disorders. The present study was aimed to reveal the effects of experimental decrease and increase of thyroxine level on expression of two types of extensive freezing: spontaneous and pinch-induced catalepsy, in Wistar rat males. Chronic administration of thyroxine synthesis inhibitor, propylthiouracil (5 mg/kg/day, 28 days), markedly decreased plasma hormone level and at the same time produced a significant increase in percentage of spontaneously cataleptic animals and immobility time, but had no effect on the expression of pinch-induced catalepsy. On the contrary, chronic thyroxin (0.1 mg/kg/day, 28 days) treatment produced no effect on spontaneous catalepsy expression, although it significantly increased percentage of cataleptic animals and immobility time of pinch-induced catalepsy. The results suggest that both the thyroid hormone deficit and excess provoke catalepsy in rats but enhance different forms of freezing reaction.  相似文献   

20.
Evidence has been accumulated implicating sex hormones as possible modulators of extrapyramidal motor function. In the present study we have investigated the effects of estrogens, progesterone, testosterone, prolactin and calcitonin on behavioral parameters related to nigro-striatal dopaminergic system, such as haloperidol-induced catalepsy in male rats. It was found that 7-days estradiol benzoate treatment (5 micrograms/rat/day) significantly increases haloperidol-induced catalepsy, suggesting a possible antidopaminergic activity of estrogens. On the other hand, prolactin facilitates nigro-striatal dopaminergic transmission. Interestingly, 7 day treatment with medroxy-acetate progesterone (MAP, 5 mg/Kg, i.p.) brings about a trend to a decrease in haloperidol-induced catalepsy, while no significantly effect was observed following acute MAP administration at the same dose. So, it is tempting to speculate that chronic progestinic treatment may result in an increase in dopaminergic tonus. Testosterone, acutely administered (5mg/kg.s.c.) induces changes similar to those observed following progesterone administration. Finally, also calcitonin is able to influence haloperidol-induced catalepsy by markedly increasing it.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号