首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The buccal ganglion of Aplysia contains three morpho-functional groups (A, B, and C) of large cells and two groups (s1 and s2) of small cells. The A cells evoke monosynaptic IPSPs in the B cells. We found that s1 cells can evoke large EPSPs in the A cells, IEPSPs in the B cells, and EIIPSPs in the C cells; several s1 cells are able to evoke all three types of responses. Many s2 cells can evoke these same responses, but only in the A and B cells. Furthermore, the s cells can evoke depolarizing PSPs in other s cells; this relation is often reciprocal. All these responses may also be contralateral. Their monosynaptic nature is shown by the consistent 1:1 relationship with the presynaptic spike, and also by the effects of intracellular tetraethylammonium and of high Mg2+ concentration in the bathing medium. D-tubocurarine reversibly suppresses the I phase of the IEPSP evoked by the s cells in the B cells. All the responses evoked by the s cells undergo depression with repetition. The network formed by all these relations is outlined, and a double relationship proposed between s cells and B cells. By electrophysiological tracing of axonal pathways it is shown that the A cells send axons into the 3rd buccal nerve, the B cells into the 2nd and/or 3rd buccal nerve and in two cases into the redular nerve, and the C cells into the gastro-oesophageal nerve. Spontaneous synaptic activity of the buccal neurons appears to be formed mostly by the described PSPs. Spontaneous firing inside the isolated ganglion corresponds well to the alternate pattern of muscular contractions of the buccal mass.  相似文献   

2.
The buccal ganglion of Aplysia contains three morpho-functional groups (A, B, and C) of large cells and two groups (s1 and s2) of small cells. The A cells evoke monoxynaptic IPSPs in the B cells. We found that s1 cells can evoke large EPSPs in the A cells, IEPSPs in the B cells, and EIIPSPs in the C cells; several s1 cells are able to evoke all three types of responses. Many s2 cells can evoke these same responses, but only in the A and B cells. Furthermore, the s cells can evoke depolarizing PSPs in other s cells; this relation is often reciprocal. All these responses may also be contralateral. Their monosynaptic nature is shown by the consistent 1:1 relationship with the presynaptic spike, and also by the effects of intracellular tetraethylammonium and of high Mg2+ concentration in the bathing medium. d-tubocurarine reversibly suppresses the I phase of the IEPSP evoked by the s cells in the B cells. All the responses evoked by the s cells undergo depression with repetition. The network formed by all these relations is outlined, and a double relationship proposed between s cells and B cells. By electrophysiological tracing of axonal pathways it is shown that the A cells send axons into the 3rd buccal nerve, the B cells into the 2nd and/or 3rd buccal nerve and in two cases into the radular nerve, and the C cells into the gastro-oesophageal nerve. Spontaneous synaptic activity of the buccal neurons appears to be formed mostly by the described PSPs. Spontaneous firing inside the isolated ganglion corresponds well to the alternate pattern of muscular contractions of the buccal mass.  相似文献   

3.
Facilitation of the second of two consecutive test EEG quanta (the summated monosynaptic potentials of the synapses of one axon arborizing in layer F of the frog tectum) was investigated in the normal and under conditions of raised extracellular Ca2+ and Mg2+ concentration. Intensification of paired-pulse facilitation (×1.4–2.4) was observed at the shortest interstimulus intervals (of 2.5–5 msec). The distribution of maximum levels for facilitation of EEG quanta was bimodal at levels 1.95 and 1.65, on the basis of which two groups were identified, one potentiating EEG quanta more than the other. The time course of paired-pulse facilitation of both groups of EEG quanta can be broken down into two exponential components with time constants of 5–6, 140–150 and 6–8, 60–70 msec respectively. Bimodal distribution of maximum paired-pulse levels in the normal, together with findings from experiments involving raised Ca2+ and Mg2+ concentrations would indicate that facilitation of frog retinotectal synapses is dependent on the quantal release of transmitter; it may thus be postulated that this release reaches near-saturation point in the normal. It is suggested that two types of axonal terminal arborizations whose synapses differ in the quantal content of transmitter release are present in layer F of the frog tectum. These axonal arbors could well originate from different class 3 and 5 retinal detectors.Z. Yanushkevichyus Institute of Physiology and Pathology of the Cardiovascular System of the Kaunas Medical Institute. Translated from Neirofiziologiya, Vol. 18, No. 1, pp. 45–55, January–February, 1986.  相似文献   

4.
Recent work on the retinotectal projection clearly establishes the roles of neuronal activity and position-based cues in the patterning of nerve connections. In some species, the high degree of spatial order has been shown to emerge from a continued process of terminal growth and refinement. The future challenge is now to determine how multiple cues work together to guide the sculpting of the final pattern.  相似文献   

5.
6.
7.
8.
9.
This study concerns the retinotopic organization of the ganglion cell fibres in the visual system of the frog Xenopus laevis. HRP was used to trace the pathways taken by fibres from discrete retinal positions as they pass from the retina, along the optic nerve and into the chiasma. The ganglion cell fibres in the retina are arranged in fascicles which correspond with their circumferential positions of origin. Within the fascicles the fibres show little age-related layering and do not have a strict radial organization. As the fascicles of fibres pass into the optic nerve head there is some exchange of position resulting in some loss of the retinal circumferential organization. The poor radial organization of the fibres in the retinal fascicles persists as the fibres pass through the intraocular part of the nerve. At a position just behind the eye there is a major fibre reorganization in which fibres arising from cells of increasingly peripheral retinal locations are found to have passed into increasingly peripheral positions in the nerve. Thus, fibres from peripheral-most retina are located at the nerve perimeter, whilst fibres from central retina are located in the nerve core. It is at this point that the radial, chronotopic, ordering of the ganglion cell axons, found throughout the rest of the optic pathway, is established. This annular organization persists along the length of the nerve until a position just before the nerve enters the brain. Here, fibres from each annulus move to form layers as they pass into the optic chiasma. This change in the radial organization appears to be related to the pathway followed by all newly growing fibres, in the most superficial part of the optic tract, adjacent to the pia. Just behind the eye, where fibres become radially ordered, the circumferential organization of the projection is largely lost. Fibres from every circumferential retinal position, which are of similar radial position, are distributed within the same annulus of the nerve. At the nerve-chiasma junction where each annulus forms a single layer as it enters the optic tract, there is a further mixing of fibres from all circumferential positions. However, as the fibres pass through the chiasma some active pathway selection occurs, generating the circumferential organization of the fibres in the optic tract. Additional observations of the organization of fibres in the optic nerve of Rana pipiens confirm previous reports of a dual representation of fibres within the nerve. The difference in the organization of fibres in the optic nerve of Xenopus and Rana pipiens is discussed.  相似文献   

10.
Synaptic vesicle pools at the frog neuromuscular junction   总被引:12,自引:0,他引:12  
We have characterized the morphological and functional properties of the readily releasable pool (RRP) and the reserve pool of synaptic vesicles in frog motor nerve terminals using fluorescence microscopy, electron microscopy, and electrophysiology. At rest, about 20% of vesicles reside in the RRP, which is depleted in about 10 s by high-frequency nerve stimulation (30 Hz); the RRP refills in about 1 min, and surprisingly, refilling occurs almost entirely by recycling, not mobilization from the reserve pool. The reserve pool is depleted during 30 Hz stimulation with a time constant of about 40 s, and it refills slowly (half-time about 8 min) as nascent vesicles bud from randomly distributed cisternae and surface membrane infoldings and enter vesicle clusters spaced at regular intervals along the terminal. Transmitter output during low-frequency stimulation (2-5 Hz) is maintained entirely by RRP recycling; few if any vesicles are mobilized from the reserve pool.  相似文献   

11.
Summary Chemical and electronic synapses are present in the ocellar synaptic region of the moth, Trichoplusia ni. The chemical synapses all appear to be of the conventional type. Four different chemical synaptic contacts were observed: Receptor cell axons presynaptic to receptor cell axons, receptor cell axons presynaptic to 1st order interneurons, 1st order interneurons presynaptic to receptor cell axons, and 1st order interneurons presynaptic to 1st order interneurons. Two different types of contact made by electronic synapes were observed: Contacts between receptor cell axons and 1st order interneurons, and contacts between 1st order interneurons. The significance of this synaptic arrangement for the generation of on and off responses in the 1st order interneurons is discussed.Supported by NSF Grant BMS 75-07645 and by the VPI & SU Research Division  相似文献   

12.
13.
14.
15.
Synaptic organization of the nucleus rotundus was studied with the electron microscope in three teleost species belonging to the same order. In spite of the different histological organization (non-laminated, incompletely laminated, and laminated), the same kinds of axon terminals (S and F) are observed in all species. A fibrous layer which is clearly formed only in the laminated nucleus is composed of F1 terminals and dendrites from a layer of small cells. The same kind of synapses formed between F1 terminals and dendrites of small cells are also found among glomeruli in the non-laminated and incompletely laminated nuclei. The main constituents of glomeruli are S and F2 terminals and dendrites of large cells in the non-laminated and incompletely laminated nuclei, and are S terminals and star-like structures which correspond to the tips of the dendrites of large cells in the laminated nucleus. The star-like structure contains numerous mitochondria and clusters of small polymorphic vesicles. Some of the vesicles aggregate at thickened cell membranes of the structure as in presynaptic dendrites.  相似文献   

16.
17.
18.
The distribution and synaptic connections of the indoleamine-accumulating neurons in the retinae of the goldfish and carp were studied by means of fluorescence and electron microscopy. The indoleamine-accumulating neurons were visualized after intravitreal injection and uptake of the indoleamine 5,6-dihydroxytryptamine. This labeling procedure produced a characteristic yellow fluorescence of the indoleamine-accumulating neurons and also characteristic ultrastructural changes in these cells. To avoid interference from the dopaminergic neurons of the retina, their processes were either removed by prior treatment with 5-hydroxydopamine or prevented from taking up 5,6-dihydroxytryptamine by the simultaneous injection of the catecholamine alpha-methyl-noradrenaline. Fluorescence-microscopic studies confirmed earlier reports that the indoleamine-accumulating perikarya and processes are distributed similar to those of amacrine cells. The indoleamine-accumulating processes ramify in three bands in the inner plexiform layer, the outermost one being the densest. Electron-microscopic investigations showed the indoleamine-accumulating neurons to have synapses of the conventional type, similar to amacrine cells. Their main synaptic contacts are with other amacrine cells, but synapses with bipolar cell terminals are also present. Both the distribution of the indoleamine-accumulating processes and their synaptic arrangement in the cyprinid retina differ from those found in mammalian retinae investigated previously.  相似文献   

19.
H W Tao  L I Zhang  F Engert  M Poo 《Neuron》2001,31(4):569-580
Input specificity of activity-induced synaptic modification was examined in the developing Xenopus retinotectal connections. Early in development, long-term potentiation (LTP) induced by theta burst stimulation (TBS) at one retinal input spreads to other unstimulated converging inputs on the same tectal neuron. As the animal develops, LTP induced by the same TBS becomes input specific, a change that correlates with the increased complexity of tectal dendrites and more restricted distribution of dendritic Ca(2+) evoked by each retinal input. In contrast, LTP induced by 1 Hz correlated pre- and postsynaptic spiking is input specific throughout the same developmental period. Thus, input specificity of LTP emerges with neural development and depends on the pattern of synaptic activity.  相似文献   

20.
Summary The synaptic organization in the lateral geniculate nucleus of the monkey has been studied by electron microscopy.The axon terminals in the lateral geniculate nucleus can be identified by the synaptic vesicles that they contain and by the specialized contacts that they make with adjacent neural processes. Two types of axon terminal have been recognized. The first type is relatively large (from 3–20 ) and contains relatively pale mitochondria, a great many vesicles and, in normal material, a small bundle of neurofilaments. These terminals have been called LP terminals. The second type is smaller (1–3 ), contains darker mitochondria, synaptic vesicles, and no neurofilaments. These have been called SD terminals.Both types of terminal make specialized axo-somatic and axo-dendritic synaptic contacts, but the axo-somatic contacts are relatively rare. In addition the LP terminals frequently make specialized contacts with the SD terminals, that is, axo-axonal contacts, and at these contacts the asymmetry of the membranes is such that the LP terminal must be regarded as pre-synaptic to the SD terminal.The majority of the synaptic contacts are identical to those that have been described previously (Gray, 1959 and 1963a) but, in addition, a new type of contact has been found. This is characterized by neurofilaments that lie close to the post-synaptic membrane, and by an irregular post-synaptic thickening. Such filamentous contacts have been found only where an LP terminal contacts a dendrite or a soma.The degeneration that follows removal of one eye demonstrates that the LP terminals are terminals of optic nerve fibres. The origin of the SD terminals is not known.The glial cells often form thin lamellae around the neural processes and tend to isolate synaptic complexes. These lamellae occasionally show a complex concentric organization similar to that of myelin.It is a pleasure to thank Prof. J. Z. Young for advice and encouragement and Dr. E. G. Gray for the considerable help he has given us. Dr. J. L. de C. Downer gave us much help with the care of the animals and with the operations. We also wish to thank Mr. K. Watkins for technical assistance and Mr. S. Waterman for the photography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号