首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been reported that oxygen uptake (VO2) increases exponentially with levels of the pedal rate during cycling. The purpose of this study was therefore to test the hypothesis that the O2 cost for internal power output (Pint) exerted in exercising muscle itself would be larger than for an external power output (Pext) calculated from external load and pedal rate during cycling exercise under various conditions of Pint and Pext in a large range of pedal rates. The O2 cost (DeltaVO2/ Deltapower output) was investigated in three experiments that featured different conditions on a cycle ergometer that were carried out at the same levels of total power output (Ptot; sum of Pint and Pext) (Exp. 1), Pext (Exp. 2) and load (Exp. 3). Each experiment consisted of three exercise tests with three levels of pedal rate (40 rpm for a lower pedal rate: LP; 70-80 rpm for a moderate pedal rate: MP; and 100-120 rpm for a higher pedal rate: HP) lasting for 2-3 min of unloaded cycling followed by 4-5 min of loaded cycling. Blood lactate accumulations (2.3-3.4 mmol l(-1)) at the HP were significantly higher compared with the LP (0.6-0.9 mmol l(-1)) and MP (0.9-1.0 mmol l(-1)) except for the LP in Exp. 1. The VO2 (360-432 ml min(-1) for LP, 479-644 ml min(-1) for MP, 960-1602 ml min(-1) for HP) during unloaded cycling in the three experiments increased exponentially with increasing pedal rates regardless of Pext=0. Moreover, the slope of the VO2-Pint (13.7 ml min(-1) W(-1)) relation revealed a steeper inclination than that of the VO2-Pext (10.2 ml min(-1) W(-1)) relation. We concluded that the O2 cost for Pint was larger than for Pext during the cycling exercises, indicating that the O2 cost for Ptot could be affected by the ratio of Pint to Ptot due to the levels of pedal rate.  相似文献   

2.
Cycling on an ergometer is an effective exercise for improving fitness. However, people with back problems or previous spinal surgery are often not aware of whether cycling could be harmful for them. To date, little information exists about spinal loads during cycling. A telemeterized vertebral body replacement allows in vivo measurement of implant loads during the activities of daily living. Five patients with a severe compression fracture of a lumbar vertebral body received these implants. During one measurement session, four of the participants exercised on a bicycle ergometer at various power levels. As the power level increased, the maximum resultant force and the difference between the maximum and minimum force (force range) during each pedal revolution increased. The average maximum-force increases between the two power levels 25 and 85 W were 73, 84, 225 and 75 N for the four patients. The corresponding increases in the force range during a pedal revolution were 84, 98, 166 and 101 N. There were large variations in the measured forces between the patients and also within the same patient, especially for high power levels. In two patients, the maximum forces during high-power cycling were higher than the forces during walking measured on the same day. Therefore, the authors conclude that patients with back problems should not cycle at high power levels shortly after surgery as a precaution.  相似文献   

3.
Purposeful movement requires that an individual produce appropriate joint torques to accelerate segments, and when environmental contact is involved, to develop task-appropriate contact forces. Developmental research has been confined largely to the mastery of unconstrained movement skills (pointing, kicking). The purpose of this study was to study the developmental progression that characterizes the interaction of muscular and non-muscular forces in tasks constrained by contact with the environment. Seven younger children (YC, 6-8 years), 7 older children (OC, 9-11 years) and 7 adults (AD) pedaled an ergometer (80 rpm) at an anthropometrically scaled cycling power. Resultant forces measured at the pedal's surface were decomposed into muscle, inertia and gravity components. Muscle pedal forces were further examined in terms of the underlying lower extremity joint torques and kinematic weights that constitute the muscular component of the pedal force. Data showed children applied muscle forces to the pedal in a significantly different manner compared to adults, and that this was due to the children's lower segmental mass and inertia. The children adjusted the contribution of the proximal joint muscle torques to compensate for reduced contributions to the resultant pedal force by gravitational and inertial components. These data show that smaller segmental mass and inertia limit younger children's ability to construct the dynamic-contact task of cycling in an adult-like form. On the basis of these results, however, the children's response was not "immature". Rather, the results show a task-appropriate adaptation to lower segmental mass and inertia.  相似文献   

4.
Cyclists seek to maximize performance during competition, and gross efficiency is an important factor affecting performance. Gross efficiency is itself affected by pedal rate. Thus, it is important to understand factors that affect freely chosen pedal rate. Crank inertial load varies greatly during road cycling based on the selected gear ratio. Nevertheless, the possible influence of crank inertial load on freely chosen pedal rate and gross efficiency has never been investigated. This study tested the hypotheses that during cycling with sub-maximal work rates, a considerable increase in crank inertial load would cause (1) freely chosen pedal rate to increase, and as a consequence, (2) gross efficiency to decrease. Furthermore, that it would cause (3) peak crank torque to increase if a constant pedal rate was maintained. Subjects cycled on a treadmill at 150 and 250W, with low and high crank inertial load, and with preset and freely chosen pedal rate. Freely chosen pedal rate was higher at high compared with low crank inertial load. Notably, the change in crank inertial load affected the freely chosen pedal rate as much as did the 100W increase in work rate. Along with freely chosen pedal rate being higher, gross efficiency at 250W was lower during cycling with high compared with low crank inertial load. Peak crank torque was higher during cycling at 90rpm with high compared with low crank inertial load. Possibly, the subjects increased the pedal rate to compensate for the higher peak crank torque accompanying cycling with high compared with low crank inertial load.  相似文献   

5.
The rising prevalence of osteoarthritis and an increase in total hip replacements calls for attention to potential therapeutic activities. Cycling is considered as a low impact exercise for the hip joint and hence recommended. However, there are limited data about hip joint loading to support this claim. The aim of this study was to measure synchronously the in vivo hip joint loads and pedal forces during cycling. The in vivo hip joint loads were measured in 5 patients with instrumented hip implants. Data were collected at several combinations of power and cadence, at two saddle heights.Joint loads and pedal forces showed strong linear correlation with power. So the relationship between the external pedal forces and internal joint forces was shown. While cycling at different cadences the minimum joint loads were acquired at 60 RPM. The lower saddle height configuration results in an approximately 15% increase compared to normal saddle height.The results offered new insights into the actual effects of cycling on the hip joint and can serve as useful tools while developing an optimum cycling regimen for individuals with coxarthrosis or following total hip arthroplasty. Due to the relatively low contact forces, cycling at a moderate power level of 90 W at a normal saddle height is suitable for patients.  相似文献   

6.
Power output and work in different muscle groups during ergometer cycling   总被引:1,自引:0,他引:1  
The aim of this study was to calculate the magnitude of the instantaneous muscular power output at the hip, knee and ankle joints during ergometer cycling. Six healthy subjects pedalled a weight-braked bicycle ergometer at 120 watts (W) and 60 revolutions per minute (rpm). The subjects were filmed with a cine camera, and pedal reaction forces were recorded from a force transducer mounted in the pedal. The muscular work at the hip, knee and ankle joint was calculated using a model based upon dynamic mechanics described elsewhere. The mean peak concentric power output was, for the hip extensors, 74.4 W, hip flexors, 18.0 W, knee extensors, 110.1 W, knee flexors, 30.0 W and ankle plantar flexors, 59.4 W. At the ankle joint, energy absorption through eccentric plantar flexor action was observed, with a mean peak power of 11.4 W and negative work of 3.4 J for each limb and complete pedal revolution. The energy production relationships between the different major muscle groups were computed and the contributions to the total positive work were: hip extensors, 27%; hip flexors, 4%; knee extensors, 39%; knee flexors, 10%; and ankle plantar flexors 20%.  相似文献   

7.
Internal mechanical work during cycling, required to raise and lower the legs and change their velocities, is shown to be an important factor when interpreting physiological responses to cycle ergometer exercise. The internal work required to move the legs during concentric and eccentric cycle ergometry at different speeds and workloads was calculated from segmental energy changes determined using cinematography and directly using an eccentric ergometer. The mean internal work rates obtained at pedal frequencies of 30, 60 and 90 min-1 were 11.5, 20 and 62 W respectively. When these estimates were added to the external work rates, they increased concentric and decreased eccentric work rates. The largest differences were seen at low work rates and high pedal frequencies during which concentric work rates increased by 51% and eccentric decreased 60% by the inclusion of internal work. When comparisons of concentric and eccentric cycling at equal uncorrected work rates were made, neglecting to include internal work introduced errors ranging from 12 to 97%. The calculated estimates of internal work agreed well with the power supplied by the eccentric ergometer to move the legs passively. The investigations show that the inclusion of internal work is important when comparing physiological responses during concentric and eccentric ergometry, especially when pedal frequencies exceed 60 min-1 and when work rates are small.  相似文献   

8.
Joint moments are of interest because they bear some relation to muscular effort and hence rider performance. The general objective of this study is to explore the relation between joint moments and pedalling rate (i.e. cadence). Joint moments are computed by modelling the leg-bicycle system as a five-bar linkage constrained to plane motion. Using dynamometer pedal force data and potentiometer crank and pedal position data, system equations are solved on a computer to produce moments at the ankle, knee and hip joints. Cadence and pedal forces are varied inversely to maintain constant power. Results indicate that average joint moments vary considerably with changes in cadence. Both hip and knee joints show an average moment which is minimum near 105 rotations min-1 for cruising cycling. It appears that an optimum rotations min-1 can be determined from a mechanical approach for any given power level and bicycle-rider geometry.  相似文献   

9.
The primary purpose of this investigation was to test the hypothesis that cycling economy, as measured by rate of oxygen consumption (VO(2)) in healthy, young, competitive cyclists pedaling at a constant workrate, increases (i.e. VO(2) decreases) when the attachment point of the foot to the pedal is moved posteriorly on the foot. The VO(2) of 11 competitive cyclists (age 26.8+/-8.9 years) was evaluated on three separate days with three anterior-posterior attachment points of the foot to the pedal (forward=traditional; rear=cleat halfway between the head of the first metatarsal and the posterior end of the calcaneous; and mid=halfway between the rear and forward positions) on each day. With a randomly selected foot position, VO(2) was measured as each cyclist pedaled at steady state with a cadence of 90 rpm and with a power output corresponding to approximately 90% of their ventilatory threshold (VT) (mean power output 203.3+/-20.8 W). After heart rate returned to baseline, VO(2) was measured again as the subject pedaled with a different anterior-posterior foot position, followed by another rest period and then VO(2) was measured at the final foot position. The key finding of this investigation was that VO(2) was not affected by the anterior-posterior foot position either for the group (p=0.311) or for any individual subject (p>or=0.156). The VO(2) for the group was 2705+/-324, 2696+/-337, and 2747+/-297 ml/min for the forward, mid, and rear foot positions, respectively. The practical implication of these findings is that adjusting the anterior-posterior foot position on the pedal does not affect cycling economy in competitive cyclists pedaling at a steady-state power output eliciting approximately 90% of VT.  相似文献   

10.
We hypothesized that the maximum mechanical power outputs that can be maintained during all-out sprint cycling efforts lasting from a few seconds to several minutes can be accurately estimated from a single exponential time constant (k(cycle)) and two measurements on individual cyclists: the peak 3-s power output (P(mech max)) and the maximum mechanical power output that can be supported aerobically (P(aer)). Tests were conducted on seven subjects, four males and three females, on a stationary cycle ergometer at a pedal frequency of 100 rpm. Peak mechanical power output (P(mech max)) was the highest mean power output attained during a 3-s burst; the maximum power output supported aerobically (P(aer)) was determined from rates of oxygen uptake measured during a progressive, discontinuous cycling test to failure. Individual power output-duration relationships were determined from 13 to 16 all-out constant load sprints lasting from 5 to 350 s. In accordance with the above hypothesis, the power outputs measured during all-out sprinting efforts were estimated to within an average of 34 W or 6.6% from P(mech max), P(aer), and a single exponential constant (k(cycle) = 0.026 s(-1)) across a sixfold range of power outputs and a 70-fold range of sprint trial durations (R2 = 0.96 vs. identity, n = 105; range: 180 to 1,136 W). Duration-dependent decrements in sprint cycling power outputs were two times greater than those previously identified for sprint running speed (k(run) = 0.013 s(-1)). When related to the respective times of pedal and ground force application rather than total sprint time, decrements in sprint cycling and running performance followed the same time course (k = 0.054 s(-1)). We conclude that the duration-dependent decrements in sprinting performance are set by the fractional duration of the relevant muscular contractions.  相似文献   

11.
Determinants of metabolic cost during submaximal cycling.   总被引:4,自引:0,他引:4  
The metabolic cost of producing submaximal cycling power has been reported to vary with pedaling rate. Pedaling rate, however, governs two physiological phenomena known to influence metabolic cost and efficiency: muscle shortening velocity and the frequency of muscle activation and relaxation. The purpose of this investigation was to determine the relative influence of those two phenomena on metabolic cost during submaximal cycling. Nine trained male cyclists performed submaximal cycling at power outputs intended to elicit 30, 60, and 90% of their individual lactate threshold at four pedaling rates (40, 60, 80, 100 rpm) with three different crank lengths (145, 170, and 195 mm). The combination of four pedaling rates and three crank lengths produced 12 pedal speeds ranging from 0.61 to 2.04 m/s. Metabolic cost was determined by indirect calorimetery, and power output and pedaling rate were recorded. A stepwise multiple linear regression procedure selected mechanical power output, pedal speed, and pedal speed squared as the main determinants of metabolic cost (R(2) = 0.99 +/- 0.01). Neither pedaling rate nor crank length significantly contributed to the regression model. The cost of unloaded cycling and delta efficiency were 150 metabolic watts and 24.7%, respectively, when data from all crank lengths and pedal speeds were included in a regression. Those values increased with increasing pedal speed and ranged from a low of 73 +/- 7 metabolic watts and 22.1 +/- 0.3% (145-mm cranks, 40 rpm) to a high of 297 +/- 23 metabolic watts and 26.6 +/- 0.7% (195-mm cranks, 100 rpm). These results suggest that mechanical power output and pedal speed, a marker for muscle shortening velocity, are the main determinants of metabolic cost during submaximal cycling, whereas pedaling rate (i.e., activation-relaxation rate) does not significantly contribute to metabolic cost.  相似文献   

12.
The aim of this study was to examine the pedal rate and chronobiological impacts on muscle activity pattern and propulsive force production during cycling. Ten male competitive cyclists performed at 06:00 and 18:00 h a submaximal exercise on a cycle ergometer at a power output which elicited 50% of their respective W(max). The exercise was divided into 4 periods lasting 5 min each during which subjects were requested to use different pedal rates (free pedal rate, 70, 90 and 120 rev min-1) in random order. The study demonstrated that, under high pedal rate, several muscles exhibited a phase advance of activity. These modifications of temporal organization of muscle activity were not sufficient to keep an identical propulsive torque pattern. Time to peak torque was delayed when pedal rate increased. The effects of circadian fluctuation on electromyographic activity were limited to a later M. rectus femoris burst end and shorter activity duration for M. tibialis anterior at 06:00 h. From the results of this study, it seems that the influence of pedal rate in the range of torque fluctuation would depend on time-of-day of testing. The decrease in torque fluctuation due to pedal rate increase is reinforced when testing in the early morning. Taking this specific variable into consideration, the chronobiological effect increases the impact of pedal rate variations.  相似文献   

13.
The aim of the study was to calculate the magnitude of the instantaneous muscular power output at the hip, knee and ankle joints during ergometer cycling at different work loads and speeds. Six healthy subjects pedalled a weight-braked cycle ergometer at 0, 120 and 240 W at a constant speed of 60 rpm. The subjects also pedalled at 40, 60, 80 and 100 rpm against the same resistance, giving power outputs of 80, 120, 160 and 200 W respectively. The subjects were filmed with a cine-film camera, and pedal reaction forces were recorded from a force transducer mounted in the pedal. The muscular work for the hip, knee and ankle joint muscles was calculated using a model based upon dynamic mechanics and described elsewhere. The total work during one pedal revolution significantly increased with increased work load but did not increase with increased pedalling rate at the same braking force. The relative proportions of total positive work at the hip, knee and ankle joints were also calculated. Hip and ankle extension work proportionally decreased with increased work load. Pedalling rate did not change the relative proportion of total work at the different joints.  相似文献   

14.
The hypothesis which motivated the work reported in this article was that neglecting pure moments developed between the foot and pedal during cycling leads to a substantial error in computing axial and varus/valgus moments at the knee. To test this hypothesis, a mathematical procedure was developed for computing the three-dimensional knee loads using three-dimensional pedal forces and moments. In addition to data from a six-load-component pedal dynamometer, the model used pedal position and orientation and knee position in the frontal plane to determine the knee joint loads. Experimental data were collected from the right leg of 11 male subjects during steady-state cycling at 90 rpm and 225 W. The mean peak varus knee moment calculated was 15.3 N m and the mean peak valgus knee moment was 11.2 N m. Neglecting the pedal moment about the anterior/posterior axis resulted in an average absolute error of 2.6 N m and a maximum absolute error of 4.0 N m in the varus/valgus knee moment. The mean peak internal and external axial knee moments were 2.8 N m and 2.3 N m, respectively. The average and maximum absolute errors in the axial knee moment for not including the moment about an axis normal to the pedal were found to be 2.6 N m and 5.0 N m, respectively. The results strongly support the use of three-dimensional pedal loads in the computation of knee joint moments out of the sagittal plane.  相似文献   

15.
Muscle fiber conduction velocity (MFCV) provides indications on motor unit recruitment strategies due to the relation between conduction velocity and fiber diameter. The aim of this study was to investigate MFCV of thigh muscles during cycling at varying power outputs, pedal rates, and external forces. Twelve healthy male participants aged between 19 and 30 yr cycled on an electronically braked ergometer at 45, 60, 90, and 120 rpm. For each pedal rate, subjects performed two exercise intensities, one at an external power output corresponding to the previously determined lactate threshold (100% LT) and the other at half of this power output (50% LT). Surface electromyogram signals were detected during cycling from vastus lateralis and medialis muscles with linear adhesive arrays of eight electrodes. In both muscles, MFCV was higher at 100% LT compared with 50% LT for all average pedal rates except 120 rpm (mean +/- SE, 4.98 +/- 0.19 vs. 4.49 +/- 0.18 m/s; P < 0.001). In all conditions, MFVC increased with increasing instantaneous knee angular speed (from 4.14 +/- 0.16 to 5.08 +/- 0.13 m/s in the range of instantaneous angular speeds investigated; P < 0.001). When MFCV was compared at the same external force production (i.e., 90 rpm/100% LT vs. 45 rpm/50% LT, and 120 rpm/100% LT vs. 60 rpm/50% LT), MFCV was higher at the faster pedal rate (5.02 +/- 0.17 vs. 4.64 +/- 0.12 m/s, and 4.92 +/- 0.19 vs. 4.49 +/- 0.11 m/s, respectively; P < 0.05) due to the increase in inertial power required to accelerate the limbs. It was concluded that, during repetitive dynamic movements, MFCV increases with the external force developed, instantaneous knee angular speed, and average pedal rate, indicating progressive recruitment of large, high conduction velocity motor units with increasing muscle force.  相似文献   

16.
During repetitive contractions, muscular work has been shown to exhibit complex relationships with muscle strain length, cycle frequency, and muscle shortening velocity. Those complex relationships make it difficult to predict muscular performance for any specific set of movement parameters. We hypothesized that the relationship of impulse with cyclic velocity (the product of shortening velocity and cycle frequency) would be independent of strain length and that impulse-cyclic velocity relationships for maximal cycling would be similar to those of in situ muscle performing repetitive contraction. Impulse and power were measured during maximal cycle ergometry with five cycle-crank lengths (120-220mm). Kinematic data were recorded to determine the relationship of pedal speed with joint angular velocity. Previously reported in situ data for rat plantaris were used to calculate values for impulse and cyclic velocity. Kinematic data indicated that pedal speed was highly correlated with joint angular velocity at the hip, knee, and ankle and was, therefore, considered a valid indicator of muscle shortening velocity. Cycling impulse-cyclic velocity relationships for each crank length were closely approximated by a rectangular hyperbola. Data for all crank lengths were also closely approximated by a single hyperbola, however, impulse produced on the 120mm cranks differed significantly from that on all other cranks. In situ impulse-cyclic velocity relationships exhibited similar characteristics to those of cycling. The convergence of the impulse-cyclic velocity relationships from most crank and strain lengths suggests that impulse-cyclic velocity represents a governing relationship for repetitive muscular contraction and thus a single equation can predict muscle performance for a wide range of functional activities. The similarity of characteristics exhibited by cycling and in situ muscle suggests that cycling can serve as a window though which to observe basic muscle function and that investigators can examine similar questions with in vivo and in situ models.  相似文献   

17.
This experiment was designed to estimate the optimum pedal rates at various power outputs on the cycle ergometer. Five trained bicycle racers performed five progressive maximal tests on the ergometer. Each rode at pedal rates of 40, 60, 80, 100, and 120 rev X min-1. Oxygen uptake and heart rate were determined from each test and plotted against pedal rate for power outputs of 100, 150, 200, 250, and 300 W. Both VO2 and heart rate differed significantly among pedal rates at equivalent power outputs, the variation following a parabolic curve. The low point in the curve was taken as the optimal pedal rate; i.e., the pedal rate which elicited the lowest heart rate or VO2 for a given power output. When the optimum was plotted against power output the variation was linear. These results indicate that an optimum pedal rate exists in this group of cyclists. This optimum pedal rate increases with power output, and when our study is compared to studies in which elite racers, or non-racers were used, the optimum seems to increase with the skill of the rider.  相似文献   

18.
Eight experienced male cyclists (C), eight well-trained male runners (R), and eight less-trained male noncyclists (LT) were tested under multiple cadence and power output conditions to determine: (1) if the cadence at which lower extremity net joint moments are minimized (cost function cadence) was associated with preferred pedaling cadence (PC), (2) if the cost function cadence increased with increases in power output, and (3) if the association is generalizable across groups differing in cycling experience and aerobic power. Net joint moments at the hip, knee, and ankle were computed from video records and pedal reaction force data using 2-D inverse dynamics. The sum of the average absolute hip, knee, and ankle joint moments defined a cost function at each power output and cadence and provided the basis for prediction of the cadence which minimized net joint moments for each subject at each power output. The cost function cadence was not statistically different from the PC at each power output in all groups. As power output increased, however, the cost function cadence increased for all three subject groups (86 rpm at 100 W, 93 rpm at 150 W, 98 rpm at 200 W, and 96 rpm at 250 W). PC showed little change (R) or a modest decline (C, LT) with increasing power output. Based upon the similarity in the mean data but different trends in the cost function cadence and PC in response to changes in power output as well as the lack of significant correlations between these two variables, it was concluded that minimiking net joint moments is a factor modestly associated with preferred cadence selection.  相似文献   

19.
The influence of body position on maximal performance in cycling   总被引:1,自引:0,他引:1  
Six healthy male subjects performed a 3-min supramaximal test in four different cycling positions: two with different trunk angles and two with different saddle-tube angles. Maximal power output and maximal oxygen uptake (VO2max) were measured. Maximal power output was significantly higher in a standard sitting (SS, 381 W, SD 49) upright position compared to all other positions: standard racing (SR, 364 W, SD 49), recumbent backwards (RB, 355 W, SD 44) and recumbent forwards (RF, 341 W, SD 54). Although VO2max was also highest in SS (4.31 l.min-1, SD 0.5) upright position, the differences in VO2max were not significant (SR, 4.2 l.min-1, SD 0.53; RB, 4.17 l.min-1, SD 0.58; RF, 4.11 l.min-1, SD 0.66). It is concluded that (supra)maximal tests on a cycle ergometer should be performed in a sitting upright position and not in a racing position. In some cases when cycling on the road, higher speeds can be attained when sitting upright. This is especially true when cycling uphill when high power must be generated to overcome gravity but the road speed, and hence the power required to overcome air resistance, is relatively low.  相似文献   

20.
Recently, it was observed that the freely chosen pedal rate of elite cyclists was significantly lower at 06:00 than at 18:00 h, and that ankle kinematics during cycling exhibits diurnal variation. The modification of the pedaling technique and pedal rate observed throughout the day could be brought about to limit the effect of diurnal variation on physiological variables. Imposing a pedal rate should limit the subject's possibility of adaptation and clarify the influence of time of day on physiological variables. The purpose of this study was to determine whether diurnal variation in cardiorespiratory variables depends on pedal rate. Ten male cyclists performed a submaximal 15 min exercise on a cycle ergometer (50% Wmax). Five test sessions were performed at 06:00, 10:00, 14:00, 18:00, and 22:00 h. The exercise bout was divided into three equivalent 5 min periods during which different pedal rates were imposed (70 rev · min-1, 90 rev · min-1 and 120 rev · min-1). No significant diurnal variation was observed in heart rate and oxygen consumption, whatever the pedal rate. A significant diurnal variation was observed in minute ventilation (p=0.01). In addition, the amplitude of the diurnal variation in minute ventilation depended on pedal rate: the higher the pedal rate, the greater the amplitude of its diurnal variation (p=0.03). The increase of minute ventilation throughout the day is mainly due to variation in breath frequency (p=0.01)—the diurnal variation of tidal volume (all pedal rate conditions taken together) being non-significant—but the effect of pedal rate×time of day interaction on minute ventilation specific to the higher pedal rate conditions (p=0.03) can only be explained by the increase of tidal volume throughout the day. Even though an influence of pedal rate on diurnal rhythms in overall physiological variables was not also evidenced, high pedal rate should have been imposed when diurnal variations of physiological variables in cycling were studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号