首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Birds fast intermittently during weather disturbances and migration. We tested responses of black duck to lost feeding days during autumn mass gain. Nine adult males were fed a pelleted diet (1.5% fat, 15.8% protein, and 18.3% neutral detergent fiber) and caged indoors during September and October (12 h light; 17 degrees -24 degrees C) to measure balances over 14 d when fed ad lib. each day and fasted intermittently for 2 d wk(-1) (short fast) or 4 d wk(-1) (long fast). Body mass (1,081 g), body water content, and metabolizable intakes of energy and protein were maintained as daily intakes of dry matter increased to 1.65 (short fast) and 2.35 (long fast) times the unfasted level. Intermittent feeding reduced metabolizability of dry matter, energy, protein, and acid detergent fiber. Concentrations of Mn provided similar estimates of metabolizability to direct measures in unfasted birds but underestimated measures of birds on long fasts. Fasting regimes continued outdoors for 9 wk when temperatures declined to -9 degrees C. Birds on short fasts were heavier (1,373 vs. 1,241 g) and fatter (159 vs. 58 g) than those on long fasts, while body water (894 g) and protein (316 g) were similar between groups after 5 wk. Birds on long fasts subsequently gained mass when fed daily, but those on short fasts lost mass when fed each day. Omnivorous waterfowl combine ingestive and digestive flexibility with plasticity of body lipid to contend with uncertain food availability.  相似文献   

2.
Reindeer (Rangifer tarandus tarandus) and caribou (Rangifer tarandus granti) use body stores (capital) and food intake (income) for survival and reproduction. Intakes of low-nitrogen (N) food declined in winter and increased in spring (51-83 g dry matter kg(-0.75) d(-1)). Reindeer calved before regaining food intake, whereas caribou calved 28 d later. Body N was conserved by minimizing oxidation of amino acid N to urea. Maternal protein stored from early winter was used for 96% of fetal growth in reindeer but only 84% of fetal growth in later-birthing caribou. Both subspecies rely on maternal body protein for 91% of the protein deposited in the neonate via milk over the first 4 wk. All females lost body protein over winter, but lactating females continued to lose protein while nonreproductive females regained protein. Net costs of lactation above maintenance were greater for N (110%-130%) than for energy (40%-59%). Large fat stores in reindeer spare body protein from oxidation in winter, whereas in caribou, less fat with the same body protein favors migration when food is inadequate. The resilience of Rangifer populations to variable patterns of food supply and metabolic demand may be related to their ability to alter the timing and allocation of body protein to reproduction.  相似文献   

3.
In a previous experiment we have documented that organisms adopt a risk-sensitive reproductive allocation when summer reproductive investment competes with survival in the coming winter ( Bårdsen et al. 2008 ). This tradeoff is present through autumn female body mass, which acts as an insurance against unpredictable winter environmental conditions. We tested this hypothesis experimentally on female reindeer experiencing stable and benign winter feeding conditions. Additional supplementary feeding and removal of newborns represented two sets of experimental manipulations. Females in the supplementary feeding group increased more in winter body mass relative to control females. This manipulation, however, did not have any effect on summer body mass development for neither females nor offspring, but we found a positive effect of feeding on offspring birth mass for smaller females. In contrast, offspring removal did have a positive effect on summer body mass development as females in this group were larger in the autumn relative to control females. In essence, we documented two immediate effects as: (1) supplementary feeding did have a positive effect on spring body mass for smaller females; and (2) offspring removal did increase the female summer somatic growth as this had a positive effect on female autumn body mass. Additionally, we tested for lagged effects, but we could not document any biologically significant effects of neither manipulation in the coming spring. The fact that we only found rather weak effects of both manipulations was as expected for risk sensitive individuals experiencing benign environmental conditions over many years.  相似文献   

4.
White adipose tissue is the principal site for lipid accumulation. Males and females maintain distinctive white adipose tissue distribution patterns. Specifically, males tend to accumulate relatively more visceral fat, whereas females accumulate relatively more subcutaneous fat. The phenomenon of maintaining typical sex-specific fat distributions suggests sex-specific mechanisms that regulate energy balance and adiposity. We used two distinct approaches to reduce fat mass, caloric restriction (CR), and surgical fat removal (termed lipectomy) and assessed parameters involved in the regulation of energy balance. We found that male and female mice responded differentially to CR- and to lipectomy-induced fat loss. Females decreased energy expenditure during CR or after lipectomy. In contrast, males responded by eating more food during food return after CR or after lipectomy. Female CR mice conserved subcutaneous fat, whereas male CR mice lost adiposity equally in the subcutaneous and visceral depots. In addition, female mice had a reduced capability to restore visceral fat after fat loss. After CR, plasma leptin levels decreased in male but not in female mice. The failure to increase food intake after returning to ad libitum intake in females could be due to the relatively stable levels of leptin. In summary, we have found sexual dimorphisms in the response to fat loss that point to important underlying differences in the strategies by which male and female mice regulate body weight.  相似文献   

5.
Muskoxen (Ovibos moschatus) consume fibrous plants that grow rapidly over the short Arctic summer. We studied responses of eight castrated male muskoxen to a diet of grass hay and mineral supplements during spring, autumn, and winter. Animals gained body mass in spring (239+/-39 kg) as body fat content increased from 26% to 38% of ingesta-free mass in winter without changes in lean mass and protein. Intakes of dry matter (DM) increased by 74% between spring and autumn as digestible energy increased from 554 to 923 kJ kg(-0.75) d(-1) during mass gain. Digestibility of cellulose (72%-76%) was not affected by increasing food intake between spring and autumn but was reduced to 65% in winter. Digestibility of nitrogen compounds was 61%-66%, even though intake increased by 134% between spring and autumn. Excess dietary nitrogen from hay and supplements increased urea concentrations in plasma and urine. High loads of solutes such as potassium did not affect plasma or urinary osmolality but were associated with increased rates of glomerular filtration and urinary excretion. Low intakes of sodium from grasses may limit intake and digestion during summer, but high food intakes can support deposition of nitrogen, calcium, magnesium, copper, and zinc in body tissue even when dietary concentrations are low. Seasonal increases in digestive and metabolic functions allow muskoxen to rapidly accumulate energy and nutrients in body tissue during the short season of plant growth.  相似文献   

6.
We studied food intake of and estimated ingested energy in female and male Myotis daubentonii during the periods of pregnancy (period 1, 8 May–4 June) and of intense spermatogenetic activity (period 2, 24 July–22 August) over 8 years (1996–2003) in central Germany. We used radiotelemetry to determine the time spent foraging and marked animals with chemiluminescent light-sticks to determine prey attack rates. Body length, body mass, moisture content, and caloric content of chironomids, the main prey of Daubenton’s bats, were measured to estimate the nightly food intake and, in consequence, energy intake. Pregnant females spent significantly more time foraging than males during period 1 and females during the post-lactation period. In contrast, male foraged longer during the period of highest spermatogenetic activity than during late spring and also significantly longer than post-lactating females. Based on a mean number of 8.3 prey attacks per minute, the time spent foraging, and a capture success rate of either 50 or 92%, calculated intake values with a feeding rate of 7.6 insects per minute (=92% capture success) were more consistent with literature data for other insectivorous bats than that of values calculated on the basis of a capture success rate of 50%. In the high capture-success model, calculated insect intake of female bats was 8.0 g during pregnancy and 4.9 g per day during post-lactation, providing 5.0 and 3.0 kJ of ingested energy per gram body mass per day. Calculated intake of male bats was 3.6 g insects per day during late spring and 8.0 g during period of intensive spermatogenesis, providing 2.6 and 5.7 kJ of ingested energy per gram body mass.  相似文献   

7.
Effect of administration of different doses (0.25, 0.5, 1 and 2 g/kg, twice daily, po) of a polyherbal preparation, OB-200G and fluoxetine (10 mg/kg, ip) for 21 days was studied on food intake and body weight in male and female Laka mice. The study further investigated the effect of administration of 0.5 g/kg dose of OB-200G for 40 days on body weight, fat pad weights, locomotor activity and biochemical parameters in monosodium glutamate (MSG)-treated male and female Wistar rat pups. Administration of OB-200G produced dose dependent decrease in body weight in both male and female mice. On the other hand, fluoxetine decreased body weight only in female mice. The food intake was significantly (P < 0.05) increased in both fasted male and female mice after treatment with the lower dose (0.25 g/kg, po) of OB-200G. However, significant (P < 0.05) decrease in food intake was recorded with the administration of higher doses (0.5, 1 and 2 g/kg, po) of OB-200G and fluoxetine in fasted female mice on day 1, 7, 14 and 21. But in male mice differential effect on food intake was recorded at different doses on day 1, 7, 14 and 21. Further, OB-200G administration significantly (P < 0.05) decreased body weight and fat pad weights, increased serum glucose levels and ambulatory activity in MSG-treated female rats but not in MSG-treated male rats. The results suggest that OB-200G involves gender differences in mediating its antiobesity effect and may supplement the current armamentarium for the treatment of obesity.  相似文献   

8.
The food consumption and egg production of 26 adult (13 female and 13 male) Atlantic cod ( Gadus morhua ) were monitored during prespawning, spawning and postspawning periods. Females spawned from late January to mid-April. Feeding activity occurred from December to early January and ceased for females, on average, 36 days (15–54 days) before the onset of spawning. The duration of spawning by females was, on average, 42 days (10–61 days) and feeding was suppressed by both sexes during the first three-quarters of each female's spawning period. Mature females went, on average, 70 days or 19% of the year without eating. An abrupt increase in feeding activity, particularly by females, occurred during the last quarter of spawning or shortly after the release of the last egg batch (on average, feeding started again after 91% of a female's eggs had been released or 82% of egg batches). Females consumed greater quantities of food than males during both winter and postspawning feeding periods. During spawning, females lost, on average, 29% of their body weight and males 14%. Fecundity ranged from 0.75 to 3.97 million eggs per female. The volume of eggs produced by four individual females (range = 1285–5995 ml in four to 11 batches) ranged from 99 to 195% (mean 150%) of a female's postspawning body volume. Six immature cod fed throughout the experimental period and gained, on average, 8% of initial body weight. Laboratory results were supported by stomach fullness index values of Georges Bank cod exhibiting different maturity states.  相似文献   

9.
The costs and benefits of body reserves fluctuate according to predictable factors such as season and life-cycle stage. Theory suggests that individuals at any time should regulate their body reserves according to the current balance between costs and benefits. Most studies on adaptive body mass regulation have been done on small passerine birds. In large vertebrates the costs associated with body reserves are assumed to be small and the reserves of these species are therefore thought to be dictated by environmental limitations. In this study we present experimental evidence for adaptive body mass regulation in female semi-domesticated reindeer ( Rangifer t. tarandus ). The risk of starvation in this species is highest in late winter. During snow melt this risk is reduced and the females should direct their effort towards the protection of their new born calf. To test how these seasonal and life-cycle changes are related to body mass regulation, we conducted a crossed experiment with two treatments where females were fed ad libitum during winter and spring respectively. During winter, the females from the fed group gained on average 12% of their initial body weight while the females from natural pastures lost on average 6% of their initial body weight. This strong response to winter feeding had no effect on reproductive performance, and the previously fed females lost their excess of body reserves during feeding in spring. This suggests that body reserves during winter primarily is used as an insurance against stochastic periods of starvation and that the females regulate their body reserves down to a set point in spring when the risk is reduced. We found however a positive correlation between initial female body weight and reproductive performance suggesting a close relationship between body weight and intrinsic individual qualities.  相似文献   

10.
The reproductive organs of logn-term captive females and of wild females of the western swamp tortoise, Pseudemydura umbrina , which were taken temporarily into captivity, were studied over several years by ultra-sound scanning. Pseudemydura umbrina , a critically-endangered species, is active during winter and spring when the ephemeral swamps it inhabits contain water and aestivates during summer and autumn (November to May/June) when the swamps are dry. The vitellogenic growth of ovarian follicles commences during aestivation in summer and continues during autumn and winter. The timing of the vitellogenic cycle is remarkably similar to that of many other Australian chelids and that of many other chelonians of temperate and subtropical regions, but the patterns of energy harvest, storage and allocation to ovarian follicles is different. Ovulation occurs between late September and early November and is preceded by a feeding bout and a sharp increase in female body mass. One clutch of 3–5 eggs (exceptionally of one or two) is laid in November/December. Sub-adult females show cycles of follicular growth, followed by atresia, for several years before ovulating and laying eggs. Females taken into captivity may miss the following vitelogenic cycle, but captivity does not generally affect vitellogenic cycles. Ovulation and egg production of captive animals is easily suppressed, however, under stress or sub-optimal food intake in spring. The sensitivity of ovulation to sub-optimal conditions and the subsequent reabsorption of the yolk material may enhance survival of the reproducing individual during long dry periods in an unpredictable environment.  相似文献   

11.
Given that many marine mammals display seasonal energetic priorities, it is important to investigate whether the impact of unexpected food restriction differs during the year. Steller sea lions (Eumetopias jubatus) fed restricted diets for up to 9 days during spring, summer, fall, and winter lost an average of 10% of their initial body mass. We tracked changes in the levels of three hormones (cortisol, total thyroxine-TT4, total triiodothyronine-TT3) and one blood metabolite (blood urea nitrogen-BUN) following a food restriction in relation to season, body mass, body composition, and metabolism. Degree of changes in cortisol, TT3, and BUN after food restriction was significantly affected by season. The greatest changes in cortisol (+231%), BUN (+11.4%), TT4 (-23.3%), and TT3 (-35.6%) occurred in the winter (November/December) when rates of body mass loss were also greatest. Changes in cortisol levels were positively related to total body mass loss, while changes in TT3 levels were negatively related. While greater increases in BUN were related to greater rates of mass loss, the use of BUN levels as an indicator of metabolic state is complicated by the type and level of food intake. The observed changes in hormone levels support morphological data suggesting Steller sea lions may be more strongly impacted by short-term, reduced energy intake during winter than at other times of the year.  相似文献   

12.
Corticotropin-releasing factor overexpressing (CRF-OE) male mice showed an inhibited feeding response to a fast, and lower plasma acyl ghrelin and Fos expression in the arcuate nucleus compared to wild-type (WT) mice. We investigated whether hormones and hypothalamic feeding signals are impaired in CRF-OE mice and the influence of sex. Male and female CRF-OE mice and WT littermates (4–6 months old) fed ad libitum or overnight fasted were assessed for body, adrenal glands and perigonadal fat weights, food intake, plasma hormones, blood glucose, and mRNA hypothalamic signals. Under fed conditions, compared to WT, CRF-OE mice have increased adrenal glands and perigonadal fat weight, plasma corticosterone, leptin and insulin, and hypothalamic leptin receptor and decreased plasma acyl ghrelin. Compared to male, female WT mice have lower body and perigonadal fat and plasma leptin but higher adrenal glands weights. CRF-OE mice lost these sex differences except for the adrenals. Male CRF-OE and WT mice did not differ in hypothalamic expression of neuropeptide Y (NPY) and proopiomelanocortin (POMC), while female CRF-OE compared to female WT and male CRF-OE had higher NPY mRNA levels. After fasting, female WT mice lost more body weight and ate more food than male WT, while CRF-OE mice had reduced body weight loss and inhibited food intake without sex difference. In male WT mice, fasting reduced plasma insulin and leptin and increased acyl ghrelin and corticosterone while female WT showed only a rise in corticosterone. In CRF-OE mice, fasting reduced insulin while leptin, acyl ghrelin and corticosterone were unchanged with no sex difference. Fasting blood glucose was higher in CRF-OE with female > male. In WT mice, fasting increased hypothalamic NPY expression in both sexes and decreased POMC only in males, while in CRF-OE mice, NPY did not change, and POMC decreased in males and increased in females. These data indicate that CRF-OE mice have abnormal basal and fasting circulating hormones and hypothalamic feeding-related signals. CRF-OE also abolishes the sex difference in body weight, abdominal fat, and fasting-induced feeding and changes in plasma levels of leptin and acyl ghrelin.  相似文献   

13.
Effects of energy intake on the estrous cycle of the desert gerbillid, Sundevall's jird (Meriones crassus; 80 g; n=22) were studied. Females were offered either maintenance or below maintenance levels of millet seeds and ad lib. Atriplex halimus leaves and stems; drinking water was not available. Vaginal smears were used to determine sexual stage. We hypothesized that the estrous cycle ceases at low levels of energy intake and commences when sufficient energy is available. Females lost body mass linearly with a decrease in metabolizable energy intake. Estrous cycle averaged 4.46 d at maintenance energy intake but increased to an average of 7.81 d at 70% of maintenance energy intake. A cessation of the cycle occurred at an energy intake below 70% of maintenance requirements, which resulted in a body mass loss of more than 1% per day. More variability in the length of the different stages of the cycle was found with lower levels of energy intake. When offered ad lib. millet seeds and A. halimus (n=14), recovery to the normal cycle was attained within 10 d by 43% of the females and within 16 d by the rest of the females. Recovery time was longest in females that previously had the lowest energy intake. We concluded that the estrous cycle of M. crassus is sensitive to energy intake. With restricted energy intake, the estrous cycle and reproductive activities cease but can be restored with provision of adequate energy. This strategy ensures that reproduction occurs when conditions of food availability and body condition of the females are favorable.  相似文献   

14.
《Acta Oecologica》2003,24(4):187-193
In food-limited populations, the presence of extra food resources can influence the way individuals allocate energy to growth and reproduction. We experimentally increased food available to cotton rats (Sigmodon hispidus) near the northern limit of their range over a 2-year period and tested the hypothesis that seasonal growth rates would be enhanced by supplemental food during winter and spring when natural food levels are low. We also examined whether additional food resources were allocated to somatic growth or reproductive effort by pregnant and lactating females. The effect of supplemental food on growth varied with mass and season, but did not influence the growth rates of most cotton rats during spring and winter. In winter, small animals on supplemented grids had higher growth rates than small animals on control grids, but females in spring had lower growth rates under supplemented conditions. Growth rates of supplemented cotton rats were enhanced in summer. Northern cotton rat populations may use season-specific foraging strategies, maximizing energy intake during the reproductive season and minimizing time spent foraging in winter. Adult females invest extra resources in reproduction rather than in somatic growth. Pregnant females receiving supplemental food had higher growth rates than control females, and dependent pups (≤ 1 month of age) born to supplemented mothers had higher growth rates than those born to control mothers. Increased body size seems to confer an advantage during the reproductive season, but has no concomitant advantage to overwinter survival.  相似文献   

15.
1. Environmental variation influences food abundance and availability, which is reflected in the reproductive success of top predators. We examined maternal expenditure, offspring mass and condition for Weddell seals in 2 years when individuals exhibited marked differences in these traits. 2. For females weighing > or = 355 kg there was a positive relationship between maternal post-partum mass (MPPM) and lactation length, but below this there was no relationship, suggesting that heavier females were able to increase lactation length but lighter females were restricted to a minimum lactation period of 33 days. 3. Overall, females were heavier in 2002, but in 2003 shorter females were lighter than similar-sized females in 2002 suggesting that the effects of environmental variability on foraging success and condition are more pronounced in smaller individuals. 4. There was no relationship between MPPM and pup birth mass, indicating pre-partum investment did not differ between years. However, there was a positive relationship between MPPM and pup mass gain. Mass and energy transfer efficiency were 10.2 and 5.4% higher in 2002 than 2003, which suggests costs associated with a putatively poor-resource year were delayed until lactation. 5. Heavier females lost a higher proportion of mass during lactation in both years, so smaller females may not have been able to provide more to their offspring to wean a pup of similar size to larger females. 6. MPPM had only a small influence on total body lipid; therefore, regardless of mass, females had the same relative body composition. Females with male pups lost a higher percentage of lipid than those with female pups, but by the end of lactation female pups had 4.5% higher lipid content than males. 7. It appears that for Weddell seals the consequences of environmentally induced variation in food availability are manifested in differences in maternal mass and expenditure during lactation. These differences translate to changes in pup mass and condition at weaning with potential consequences for future survival and recruitment.  相似文献   

16.
《Animal behaviour》1988,36(5):1371-1378
The influence of male dominance on male-female social interactions was examined in black ducks, Anas rubripes, and mallards, A. platyrhynchos, that were raised from hatch in four different groups (male and female mallards; male and female black ducks; male mallards and female black ducks; male black ducks and female mallards). The mate preference of females, independent of the influence of male dominance, was determined by exposing females to four caged, isolated males, one from each different group. All females preferred the type of male they had been raised with since hatch. Females were then exposed to the same four males, now free-swimming, to determine how male dominance influenced the initial preference. Under these conditions, each female associated primarily with the most dominant of the four males, regardless of her initial mate preference. Mallards were the most dominant males in all tests. These results demonstrate that male dominance influences social interactions and is one factor contributing to hybridization between these two species.  相似文献   

17.
《新西兰生态学杂志》2011,34(2):265-268
Winter is a challenging time for temperate insectivorous songbirds, due to colder temperatures, reduced prey activity and shorter diurnal foraging times. For species that are non-migratory, territorial and monogamous, winter conditions may result in within-pair competition. However, little is known about how monogamous pairs coexist on their winter territories. We investigated temporal patterns in male?female interactions of the New Zealand robin (Petroica australis to better understand mechanisms of coexistence during winter. Previous work has shown that male robins are physically dominant over females and maintain priority access to food year-round. We quantified female behaviour throughout the 2008 non-breeding season to better understand how females coexist with physically dominant males on winter territories. Results showed that pairs rarely forage in close proximity in autumn and winter, suggesting females avoid males at this time of year. Males and females begin to spend more time foraging together as winter turns to spring. During this winter?spring transitional period, females steal large amounts of food hoarded by males. These results indicate that male and female New Zealand robins use different behavioural mechanisms to coexist on their winter territories. While males are dominant physically, females show a seasonally variable strategy where they avoid males in autumn and winter, and then steal male-made caches from early spring until the onset of inter-pair cooperation and the breeding season.  相似文献   

18.
Organisms should adopt a risk-sensitive reproductive allocation when summer reproductive allocation competes with survival in the coming winter. This trade off is shown through autumn female body mass, which acts as an insurance against unpredictable winter environmental conditions. We tested this hypothesis on female reindeer in a population that has experienced a time period of dramatic increase in abundance. Environmental conditions during winter were fairly stable (with the exception of 1 year). We conclude that increased population abundance (perhaps in interaction with winter environmental conditions) could have represented a worsening of winter environmental conditions as both autumn offspring and spring female body mass decreased during the course of the study. Moreover, we found that the cost of reproduction was related to environmental conditions as: (1) autumn body mass was larger for barren than for lactating females, and this difference was temporally highly variable; (2) lactating females produced smaller offspring than barren ones in the following year; and (3) reproductive output (offspring size) decreased over time. We also found evidence of quality effects as lactating females had a higher reproductive success in the following year. In sum, a worsening of winter conditions lead to: (1) decreased reproductive output; (2) lowered autumn body mass for lactating females; and (3) increased body mass for barren females. Since females reduce their reproductive allocation as winter conditions becomes more severe, we conclude that reindeer have adopted a risk-sensitive reproductive allocation.  相似文献   

19.
The feeding ecology of the caridean shrimp Palaemon peringueyi in the temporarily open/closed Kasouga Estuary, Eastern Cape, was examined during summer and winter employing stomach fullness index (SFI) analysis. Mean SFI values for male and female shrimp during summer ranged from 0.85% to 2.36% and from 0.56% and 2.61% body dry weight, respectively. During winter, SFI values for males and females were lower, and varied between 0.23% and 1.56% and 0.36% and 1.84% body dry weight, respectively. There were no significant differences in the SFI values between males and females during the two seasons. A peak in the feeding activity for both sexes was observed during the daytime during both summer and winter. For both males and females, non-linear regression analysis best explained the change in SFI over time. The gut evacuation rate constants (k) of males and females during summer were estimated at 0.43 h?1 and 0.30 h?1, respectively. These values correspond to a daily food intake equivalent to 16.2% body dwt for males and 11.1% body dwt for females. During winter, the gut evacuation rates of the shrimp were estimated at 0.35 h?1 for males and 0.28 h?1 for females. The daily ration for adult male and female shrimp during winter was estimated at 6.1% and 6.8% body dwt, respectively. The lower estimates obtained during winter appear largely to reflect the influence of the reduced water temperatures on the metabolic activities of the shrimp.  相似文献   

20.
1. Recent studies have shown that optimal reproductive allocation depends on both climatic conditions and population density. We tested this hypothesis using six years of demographic data from eight reindeer (Rangifer tarandus) populations coupled with data on population abundance and vegetation greenness [measured using the Enhanced Vegetation Index (EVI)]. 2. Female spring body mass positively affected summer body mass gain, and lactating females were unable to compensate for harsh winters as efficiently as barren ones. Female spring body mass was highly sensitive to changes in population abundance and vegetation greenness and less dependent on previous autumn body mass and reproductive status. Lactating females were larger than barren females in the spring. Moreover, female autumn body mass was positively related to female autumn body mass and reproductive success and was not very sensitive to changes in vegetation greenness and population abundance. 3. Offspring autumn body mass was positively related to both maternal spring and autumn body mass, and as predicted from theory, offspring were more sensitive to changes in vegetation greenness and population abundance than adult females. A lagged cost of reproduction was present as larger females who were barren, the previous year produced larger offspring than equally sized females that successfully reproduced the previous year. 4. Reproductive success was negatively related to female autumn body mass and positively related to female spring body mass. Moreover, females who successfully reproduced the previous year experienced the highest reproductive success. The fact that negative density-dependence was only present for females that had successfully reproduced the previous year further support the hypothesis that reproduction is costly. 5. This study shows that female reindeer buffer their reproductive allocation according to expected winter conditions and that their buffering abilities were limited by population abundance and a lagged cost of reproduction and enhanced by vegetation greenness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号