首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
D E Birse  U Kapp  K Strub  S Cusack    A Aberg 《The EMBO journal》1997,16(13):3757-3766
The mammalian signal recognition particle (SRP) is an 11S cytoplasmic ribonucleoprotein that plays an essential role in protein sorting. SRP recognizes the signal sequence of the nascent polypeptide chain emerging from the ribosome, and targets the ribosome-nascent chain-SRP complex to the rough endoplasmic reticulum. The SRP consists of six polypeptides (SRP9, SRP14, SRP19, SRP54, SRP68 and SRP72) and a single 300 nucleotide RNA molecule. SRP9 and SRP14 proteins form a heterodimer that binds to the Alu domain of SRP RNA which is responsible for translation arrest. We report the first crystal structure of a mammalian SRP protein, that of the mouse SRP9/14 heterodimer, determined at 2.5 A resolution. SRP9 and SRP14 are found to be structurally homologous, containing the same alpha-beta-beta-beta-alpha fold. This we designate the Alu binding module (Alu bm), an additional member of the family of small alpha/beta RNA binding domains. The heterodimer has pseudo 2-fold symmetry and is saddle like, comprising a strongly curved six-stranded amphipathic beta-sheet with the four helices packed on the convex side and the exposed concave surface being lined with positively charged residues.  相似文献   

2.
We have identified functionally and analyzed a minimal Alu RNA folding domain that is recognized by SRPphi14-9. Recombinant SRPphi14-9 is a fusion protein containing on a single polypeptide chain the sequences of both the SRP14 and SRP9 proteins that are part of the Alu domain of the signal recognition particle (SRP). SRPphi14-9 has been shown to bind to the 7SL RNA of SRP and it confers elongation arrest activity to reconstituted SRP in vitro. Alu RNA variants with homogeneous 3' ends were produced in vitro using ribozyme technology and tested for specific SRPphi14-9 binding in a quantitative equilibrium competition assay. This enabled identification of an Alu RNA of 86 nt (SA86) that competes efficiently with 7SL RNA for SRPphi14-9 binding, whereas smaller RNAs did not. The secondary structure of SA86 includes two stem-loops that are connected by a highly conserved bulge and, in addition, a part of the central adaptor stem that contains the sequence at the very 3' end of 7SL RNA. Circularly permuted variants of SA86 competed only if the 5' and 3' ends were joined with an extended linker of four nucleotides. SA86 can thus be defined as an autonomous RNA folding unit that does not require its 5' and 3' ends for folding or for specific recognition by SRPphi14-9. These results suggest that Alu RNA identity is determined by a characteristic tertiary structure, which might consist of two flexibly linked domains.  相似文献   

3.
F Bovia  N Bui    K Strub 《Nucleic acids research》1994,22(11):2028-2035
The targeting of nascent polypeptide chains to the endoplasmic reticulum is mediated by a cytoplasmic ribonucleoprotein, the signal recognition particle (SRP). The 9 kD (SRP9) and the 14 kD (SRP14) subunits of SRP are required to confer elongation arrest activity to the particle. SRP9 and SRP14 form a heterodimer which specifically binds to SRP RNA. We have constructed cDNAs that encode single polypeptide chains comprising SRP9 and SRP14 sequences in the two possible permutations linked by a 17 amino acid peptide. We found that both fusion proteins specifically bound to SRP RNA as monomeric molecules folded into a heterodimer-like structure. Our results corroborate the previous hypothesis that the authentic heterodimer binds to SRP RNA in equimolar ratio. In addition, both fusion proteins conferred elongation arrest activity to SRP(-9/14), which lacks this function, and one fusion protein could functionally replace the heterodimer in the translocation assay. Thus, the normal N-and C-termini of both proteins have no essential role in folding, RNA-binding and in mediating the biological activities. The possibility to express the heterodimeric complex as a single polypeptide chain facilitates the analysis of its functions and its structure in vivo and in vitro.  相似文献   

4.
The signal recognition particle (SRP), a cytoplasmic ribonucleoprotein, plays an essential role in targeting secretory proteins to the rough endoplasmic reticulum membrane. In addition to the targeting function, SRP contains an elongation arrest or pausing function. This function is carried out by the Alu domain, which consists of two proteins, SRP9 and SRP14, and the portion of SRP (7SL) RNA which is homologous to the Alu family of repetitive sequences. To study the assembly pathway of the components in the Alu domain, we have isolated a cDNA clone of SRP9, in addition to a previously obtained cDNA clone of SRP14. We show that neither SRP9 nor SRP14 alone interacts specifically with SRP RNA. Rather, the presence of both proteins is required for the formation of a stable RNA-protein complex. Furthermore, heterodimerization of SRP9 and SRP14 occurs in the absence of SRP RNA. Since a partially reconstituted SRP lacking SRP9 and SRP14 [SRP(-9/14)] is deficient in the elongation arrest function, it follows from our results that both proteins are required to assemble a functional domain. In addition, SRP9 and SRP14 synthesized in vitro from synthetic mRNAs derived from their cDNA clones restore elongation arrest activity to SRP(-9/14).  相似文献   

5.
The mammalian signal recognition particle (SRP) is a small cytoplasmic ribonucleoprotein required for the cotranslational targeting of secretory proteins to the endoplasmic reticulum membrane. The heterodimeric protein subunit SRP9/14 was previously shown to be essential for SRP to cause pausing in the elongation of secretory protein translation. RNase protection and filter binding experiments have shown that binding of SRP9/14 to SRP RNA depends solely on sequences located in a domain of SRP RNA that is strongly homologous to the Alu family of repetitive DNA sequences. In addition, the use of hydroxyl radicals, as RNA-cleaving reagents, has revealed four distinct regions in this domain that are in close contact with SRP9/14. Surprisingly, the nucleotide sequence in one of these contact sites, predicted to be mostly single stranded, was found to be extremely conserved in SRP RNAs of evolutionarily distant organisms ranging from eubacteria and archaebacteria to yeasts and higher eucaryotic cells. This finding suggests that SRP9/14 homologs may also exist in these organisms, where they possibly contribute to the regulation of protein synthesis similar to that observed for mammalian SRP in vitro.  相似文献   

6.
Richter CV  Träger C  Schünemann D 《FEBS letters》2008,582(21-22):3223-3229
The chloroplast signal recognition particle (cpSRP) consists of a conserved 54kDa subunit (cpSRP54) and a unique 43kDa subunit (cpSRP43) but lacks SRP-RNA, an essential and universally conserved component of cytosolic SRPs. High sequence similarity exists between cpSRP54 and bacterial SRP54 except for a plant-specific C-terminal extension containing the cpSRP43-binding motif. We found that cpSRP54 of higher plants lacks the ability to bind SRP-RNA because of two amino acid substitutions within a region corresponding to the RNA binding domain of cytosolic SRP54, whereas the C-terminal extension does not affect RNA binding. Phylogenetic analysis revealed that these mutations occur in the cpSRP54 homologues of higher plants but not in most algae.  相似文献   

7.
To identify some of the determinants in the 19-kilodalton protein of signal recognition particle (SRP19) for binding to signal recognition particle RNA, two mutant derivatives of the SRP19 were constructed, lacking 14 and 24 C-terminal amino acids. Polypeptides were transcribed and translated in vitro and tested for their ability to bind to signal recognition particle RNA by retention of protein-RNA complexes on DEAE-Sepharose. Both mutant polypeptides form complexes with the RNA, demonstrating that the 24 C-terminal amino acids, which include a lysine-rich sequence at positions 136-144, are dispensable. A third mutant polypeptide, in which eight additional amino acids were removed by oligonucleotide-directed digestion of the mRNA, was unable to bind. The amino acids in the sequence PKLKTRTQ correspond to positions 113-120; they are suggested to be involved in interaction with signal recognition particle RNA.  相似文献   

8.
The contribution made by the RNA component of signal recognition particle (SRP) to its function in protein targeting is poorly understood. We have generated a complete secondary structure for Saccharomyces cerevisiae SRP RNA, scR1. The structure conforms to that of other eukaryotic SRP RNAs. It is rod-shaped with, at opposite ends, binding sites for proteins required for the SRP functions of signal sequence recognition (S-domain) and translational elongation arrest (Alu-domain). Micrococcal nuclease digestion of purified S. cerevisiae SRP separated the S-domain of the RNA from the Alu-domain as a discrete fragment. The Alu-domain resolved into several stable fragments indicating a compact structure. Comparison of scR1 with SRP RNAs of five yeast species related to S. cerevisiae revealed the S-domain to be the most conserved region of the RNA. Extending data from nuclease digestion with phylogenetic comparison, we built the secondary structure model for scR1. The Alu-domain contains large extensions, including a sequence with hallmarks of an expansion segment. Evolutionarily conserved bases are placed in the Alu- and S-domains as in other SRP RNAs, the exception being an unusual GU(4)A loop closing the helix onto which the signal sequence binding Srp54p assembles (domain IV). Surprisingly, several mutations within the predicted Srp54p binding site failed to disrupt SRP function in vivo. However, the strength of the Srp54p-scR1 and, to a lesser extent, Sec65p-scR1 interaction was decreased in these mutant particles. The availability of a secondary structure for scR1 will facilitate interpretation of data from genetic analysis of the RNA.  相似文献   

9.
F Janiak  P Walter  A E Johnson 《Biochemistry》1992,31(25):5830-5840
Protein-RNA and protein-protein interactions involved in the assembly of the signal recognition particle (SRP) were examined using fluorescence spectroscopy. Fluorescein was covalently attached to the 3'-terminal ribose of SRP RNA following periodate oxidation, and the resulting SRP RNA-Fl was reconstituted into a fluorescent SRP species that was functional in promoting translocation of secretory proteins across the membrane of the endoplasmic reticulum. Each of the two protein heterodimers purified from SRP elicited a substantial change in fluorescein emission upon association with the modified RNA. The binding of SRP9/14 to singly-labeled SRP RNA-Fl increased fluorescein emission intensity by 41% at pH 7.5 and decreased its anisotropy from 0.18 to 0.16. The binding of SRP68/72 increased the fluorescein anisotropy from 0.18 to 0.23 but did not alter the emission intensity of SRP RNA-Fl. These fluorescence changes did not result from a direct interaction between the dye and protein because the fluorescein remained accessible to both iodide ions and fluorescein-specific antibodies in the complexes. The spectral changes were elicited by specific SRP RNA-protein interactions, since (i) the SRP9/14- and SRP68/72-dependent changes were unique, (ii) an excess of unlabeled SRP RNA, but not of tRNA, blocked the fluorescence changes, and (iii) no emission changes were observed when SRP RNA-Fl was titrated with other RNA-binding proteins. Each heterodimer bound tightly to the RNA, since the Kd values determined spectroscopically and at equilibrium for the SRP9/14 and the SRP68/72 complexes with SRP RNA-Fl were less than 0.1 and 7 +/- 3 nM, respectively. The binding affinity of SRP68/72 for SRP RNA-Fl was unaffected by the presence of SRP9/14, and hence the binding of the heterodimers to SRP RNA is noncooperative in the absence of SRP54 and SRP19. The SRP protein heterodimers therefore associate randomly and independently with SRP RNA to form domains in the particle that are distinct both structurally and functionally. Any cooperativity in SRP assembly would have to be mediated by SRP54 and/or SRP19.  相似文献   

10.
J Yin  C H Yang    C Zwieb 《RNA (New York, N.Y.)》2001,7(10):1389-1396
Assembly of the human signal recognition particle (SRP) entails the incorporation of protein SRP54, mediated by a protein SRP1 9-induced conformational change in SRP RNA. To localize the region that controls this crucial step in the assembly of human SRP RNA, four chimeras, Ch-1 to Ch-4, composed of portions of human and Methanococcus jannashii SRP RNAs, were generated by PCR site-directed mutagenesis from a larger precursor. Protein-binding activities of the hybrid RNAs were determined using purified human SRP19 and a polypeptide (SRP54M) that corresponded to the methionine-rich domain of human SRP54. Mutant Ch-1 containing the large domain of M. jannashii SRP RNA, as well as mutant Ch-2 RNA in which helices 6 and 8 were replaced, bound SRP54M independently of SRP19. Mutant Ch-3 RNA, which contained M. jannashii helix 6, required SRP19 for binding of SRP54M, but mutant Ch-4 RNA, which possessed M. jannashii helix 8, bound SRP54M without SRP19. We concluded that the formation of a stable ternary complex did not rely on extensive conformational changes that might take place throughout the large domain of SRP, but was controlled by a smaller region encompassing certain RNA residues at positions 177 to 221. Five chimeric RNAs altered within helix 8 were used to investigate the potential role of a significant AA-to-U change and to determine the boundaries of the assembly control region. Reduced protein-binding activities of these chimeras demonstrated a considerable overlap of regions required for SRP54 binding and assembly control.  相似文献   

11.
Y Thomas  N Bui    K Strub 《Nucleic acids research》1997,25(10):1920-1929
The signal recognition particle (SRP) provides the molecular link between synthesis of polypeptides and their concomitant translocation into the endoplasmic reticulum. During targeting, SRP arrests or delays elongation of the nascent chain, thereby presumably ensuring a high translocation efficiency. Components of the Alu domain, SRP9/14 and the Alu sequences of SRP RNA, have been suggested to play a role in the elongation arrest function of SRP. We generated a truncated SRP14 protein, SRP14-20C, which forms, together with SRP9, a stable complex with SRP RNA. However, particles reconstituted with SRP9/14-20C, RC(9/14-20C), completely lack elongation arrest activity. RC(9/14-20C) particles have intact signal recognition, targeting and ribosome binding activities. SRP9/14-20C therefore only impairs interactions with the ribosome that are required to effect elongation arrest. This result provides evidence that direct interactions between the Alu domain components and the ribosome are required for this function. Furthermore, SRP9/14-20C binding to SRP RNA results in tertiary structure changes in the RNA. Our results strongly indicate that these changes account for the negative effect of SRP14 truncation on elongation arrest, thus revealing a critical role of the RNA in this function.  相似文献   

12.
Cotranslational protein targeting to membranes is regulated by two GTPases in the signal recognition particle (SRP) and the SRP receptor; association between the two GTPases is slow and is accelerated 400-fold by the SRP RNA. Intriguingly, the otherwise universally conserved SRP RNA is missing in a novel chloroplast SRP pathway. We found that even in the absence of an SRP RNA, the chloroplast SRP and receptor GTPases can interact efficiently with one another; the kinetics of interaction between the chloroplast GTPases is 400-fold faster than their bacterial homologues, and matches the rate at which the bacterial SRP and receptor interact with the help of SRP RNA. Biochemical analyses further suggest that the chloroplast SRP receptor is pre-organized in a conformation that allows optimal interaction with its binding partner, so that conformational changes during complex formation are minimized. Our results highlight intriguing differences between the classical and chloroplast SRP and SRP receptor GTPases, and help explain how the chloroplast SRP pathway can mediate efficient targeting of proteins to the thylakoid membrane in the absence of the SRP RNA, which plays an indispensable role in all the other SRP pathways.  相似文献   

13.
The signal recognition particle (SRP) is a conserved ribonucleoprotein particle that targets membrane and secreted proteins to translocation channels in membranes. In eukaryotes, the Alu domain, which comprises the 5′ and 3′ extremities of the SRP RNA bound to the SRP9/14 heterodimer, is thought to interact with the ribosome to pause translation elongation during membrane docking. We present the 3.2 Å resolution crystal structure of a chimeric Alu domain, comprising Alu RNA from the archaeon Pyrococcus horikoshii bound to the human Alu binding proteins SRP9/14. The structure reveals how intricate tertiary interactions stabilize the RNA 5′ domain structure and how an extra, archaeal-specific, terminal stem helps constrain the Alu RNA into the active closed conformation. In this conformation, highly conserved noncanonical base pairs allow unusually tight side-by-side packing of 5′ and 3′ RNA stems within the SRP9/14 RNA binding surface. The biological relevance of this structure is confirmed by showing that a reconstituted full-length chimeric archaeal-human SRP is competent to elicit elongation arrest in vitro. The structure will be useful in refining our understanding of how the SRP Alu domain interacts with the ribosome.  相似文献   

14.
Signal recognition particle (SRP), a ribonucleoprotein composed of six polypeptides and one RNA subunit, serves as an adaptor between the cytoplasmic protein synthetic machinery and the translocation apparatus of the endoplasmic reticulum. To begin constructing a functional map of the 7SL RNA component of SRP, we extensively mutagenized the Schizosaccharomyces pombe SRP7 gene. Phenotypes are reported for fifty-two mutant alleles derived from random point mutagenesis, seven alleles created by site-directed mutagenesis to introduce restriction sites into the SRP7 gene, nine alleles designed to pinpoint conditional lesions, and three alleles with extra nucleotides inserted at position 84. Our data indicate that virtually all single nucleotide changes as well as many multiple substitutions in this highly structured RNA are phenotypically silent. Six lethal alleles and eleven which result in sensitivity to the combination of high temperature and elevated osmotic strength were identified. These mutations cluster in conserved regions which, in the mammalian RNA, are protected from nucleolytic agents by SRP proteins. The effects of mutations in the presumptive binding site for a fission yeast SRP 9/14 homolog indicate that both the identity of a conserved residue and the secondary structure within which it is embedded are functionally important. The phenotypes of mutations in Domain IV suggest particular residues as base-specific contacts for the fission yeast SRP54 protein. A single allele which confers temperature-sensitivity in the absence of osmotic perturbants was identified in this study; the growth properties of the mutant strain suggest that the encoded RNA is somewhat defective even at the permissive temperature, and is most likely unable to correctly assemble with SRP proteins at the nonpermissive temperature.  相似文献   

15.
16.
The mammalian Alu domain of the signal recognition particle (SRP) consists of a heterodimeric protein SRP9/14 and the Alu portion of 7SL RNA and comprises the elongation arrest function of the particle. To define the domain in Saccharomyces cerevisiae SRP that is homologous to the mammalian Alu domain [Alu domain homolog in yeast (Adhy)], we examined the assembly of a yeast protein homologous to mammalian SRP14 (Srp14p) and scR1 RNA. Srp14p binds as a homodimeric complex to the 5' sequences of scR1 RNA. Its minimal binding site consists of 99 nt. (Adhy RNA), comprising a short hairpin structure followed by an extended stem. As in mammalian SRP9/14, the motif UGUAAU present in most SRP RNAs is part of the Srp14p binding sites as shown by footprint and mutagenesis studies. In addition, certain basic amino acid residues conserved between mammalian SRP14 and Srp14p are essential for RNA binding in both proteins. These findings confirm the common ancestry of the yeast and the mammalian components and indicate that Srp14p together with Adhy RNA represents the Alu domain homolog in yeast SRP that may comprise its elongation arrest function. Despite the similarities, Srp14p selectively recognizes only scR1 RNA, revealing substantial changes in RNA-protein recognition as well as in the overall structure of the complex. The alignment of the three yeast SRP RNAs known to date suggests a common structure for the putative elongation arrest domain of all three organisms.  相似文献   

17.
4.5S RNA is essential for viability of Escherichia coli, and forms a key component of the signal recognition particle (SRP), a ubiquitous ribonucleoprotein complex responsible for cotranslational targeting of secretory proteins. 4.5S RNA also binds independently to elongation factor G (EF-G), a five-domain GTPase that catalyzes the translocation step during protein biosynthesis on the ribosome. Point mutations in EF-G suppress deleterious effects of 4.5S RNA depletion, as do mutations in the EF-G binding site within ribosomal RNA, suggesting that 4.5S RNA might play a critical role in ribosome function in addition to its role in SRP. Here we show that 4.5S RNA and EF-G form a phylogenetically conserved, low-affinity but highly specific complex involving sequence elements required for 4.5S binding to its cognate SRP protein, Ffh. Mutational analysis indicates that the same molecular structure of 4.5S RNA is recognized in each case. Surprisingly, however, the suppressor mutant forms of EF-G bind very weakly or undetectably to 4.5S RNA, implying that cells can survive 4.5S RNA depletion by decreasing the affinity between 4.5S RNA and the translational machinery. These data suggest that SRP function is the essential role of 4.5S RNA in bacteria.  相似文献   

18.
In all organisms the Signal Recognition Particle (SRP), binds to signal sequences of proteins destined for secretion or membrane insertion as they emerge from translating ribosomes. In Archaea and Eucarya, the conserved ribonucleoproteic core is composed of two proteins, the accessory protein SRP19, the essential GTPase SRP54, and an evolutionarily conserved and essential SRP RNA. Through the GTP-dependent interaction between the SRP and its cognate receptor SR, ribosomes harboring nascent polypeptidic chains destined for secretion are dynamically transferred to the protein translocation apparatus at the membrane. We present here high-resolution X-ray structures of SRP54 and SRP19, the two RNA binding components forming the core of the signal recognition particle from the hyper-thermophilic archaeon Pyrococcus furiosus (Pfu). The 2.5 A resolution structure of free Pfu-SRP54 is the first showing the complete domain organization of a GDP bound full-length SRP54 subunit. In its ras-like GTPase domain, GDP is found tightly associated with the protein. The flexible linker that separates the GTPase core from the hydrophobic signal sequence binding M domain, adopts a purely alpha-helical structure and acts as an articulated arm allowing the M domain to explore multiple regions as it scans for signal peptides as they emerge from the ribosomal tunnel. This linker is structurally coupled to the GTPase catalytic site and likely to propagate conformational changes occurring in the M domain through the SRP RNA upon signal sequence binding. Two different 1.8 A resolution crystal structures of free Pfu-SRP19 reveal a compact, rigid and well-folded protein even in absence of its obligate SRP RNA partner. Comparison with other SRP19*SRP RNA structures suggests the rearrangement of a disordered loop upon binding with the RNA through a reciprocal induced-fit mechanism and supports the idea that SRP19 acts as a molecular scaffold and a chaperone, assisting the SRP RNA in adopting the conformation required for its optimal interaction with the essential subunit SRP54, and proper assembly of a functional SRP.  相似文献   

19.
The signal recognition particle (SRP) controls the transport of secretory proteins into and across lipid bilayers. SRP-like ribonucleoprotein complexes exist in all organisms, including plants. We characterized the rice SRP RNA and its primary RNA binding protein, SRP19. The secondary structure of the rice SRP RNA was similar to that found in other eukaryotes; however, as in other plant SRP RNAs, a GUUUCA hexamer sequence replaced the highly conserved GNRA-tetranucleotide loop motif at the apex of helix 8. The small domain of the rice SRP RNA was reduced considerably. Structurally, rice SRP19 lacked two small regions that can be present in other SRP19 homologues. Conservative structure prediction and site-directed mutagenesis of rice and human SRP19 polypeptides indicated that binding to the SRP RNAs occurred via a loop that is present in the N-domain of both proteins. Rice SRP19 protein was able to form a stable complex with the rice SRP RNA in vitro. Furthermore, heterologous ribonucleoprotein complexes with components of the human SRP were assembled, thus confirming a high degree of structural and functional conservation between plant and mammalian SRP components.  相似文献   

20.
Cotranslational protein targeting by the signal recognition particle (SRP) requires the SRP RNA, which accelerates the interaction between the SRP and SRP receptor 200-fold. This otherwise universally conserved SRP RNA is missing in the chloroplast SRP (cpSRP) pathway. Instead, the cpSRP and cpSRP receptor (cpFtsY) by themselves can interact 200-fold faster than their bacterial homologues. Here, cross-complementation analyses revealed the molecular origin underlying their efficient interaction. We found that cpFtsY is 5- to 10-fold more efficient than Escherichia coli FtsY at interacting with the GTPase domain of SRP from both chloroplast and bacteria, suggesting that cpFtsY is preorganized into a conformation more conducive to complex formation. Furthermore, the cargo-binding M-domain of cpSRP provides an additional 100-fold acceleration for the interaction between the chloroplast GTPases, functionally mimicking the effect of the SRP RNA in the cotranslational targeting pathway. The stimulatory effect of the SRP RNA or the M-domain of cpSRP is specific to the homologous SRP receptor in each pathway. These results strongly suggest that the M-domain of SRP actively communicates with the SRP and SR GTPases and that the cytosolic and chloroplast SRP pathways have evolved distinct molecular mechanisms (RNA vs. protein) to mediate this communication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号