共查询到20条相似文献,搜索用时 15 毫秒
1.
Postnatal dental pulp stem cells (DPSCs) represent a unique precursor population in the dental pulp, which have multipotential and harbor great potential for tissue engineering purposes. However, for therapy applications, transplanted cells are often exposed to unfavorable conditions such as cytokines released from necrotic or inflammatory cells in injured tissues. It is not clear how stem cells exposed to these conditions changes in their characteristics. In this study, the effects of pro-inflammatory cytokines, such as IL-1 and TNF, on DPSCs were investigated. Cells were treated with IL-1, TNF, or both for 3, 7, and 12 days. The cultures were evaluated for cell proliferation, ALP activity, and real-time PCR. We found that a short treatment (3 days) of pro-inflammatory cytokines induced the odontogenic differentiation of DPSCs. Furthermore, post 3 days treatment with pro-inflammatory cytokines, the cell-scaffold complexes were implanted subcutaneously in mice for 8 weeks. Histological analysis demonstrated that the cultures gave obviously mineralized tissue formation, especially for both IL-1 and TNF applied. These data suggest that IL-1 and TNF produced in the early inflammatory reaction may induce the mineralization of DPSCs. 相似文献
2.
3.
4.
5.
Elkoreh G Blais V Béliveau E Guillemette G Denault JB 《Journal of cellular biochemistry》2012,113(8):2775-2784
Apoptosis is characterized by the proteolytic cleavage of hundreds of proteins. One of them, the type 1 inositol-1,4,5-trisphosphate receptor (IP(3) R-1), a multimeric receptor located on the endoplasmic reticulum (ER) membrane that is critical to calcium homeostasis, was reported to be cleaved during staurosporine (STS) induced-apoptosis in Jurkat cells. Because the reported cleavage site separates the IP(3) binding site from the channel moiety, its cleavage would shut down a critical signaling pathway that is common to several cellular processes. Here we show that IP(3) R-1 is not cleaved in 293 cells treated with STS, TNFα, Trail, or ultra-violet (UV) irradiation. Further, it is not cleaved in Hela or Jurkat cells induced to undergo apoptosis with Trail, TNFα, or UV. In accordance with previous reports, we demonstrate that it is cleaved in a Jurkat cell line treated with STS. However its cleavage occurs only after poly(ADP-ribose) polymerase (PARP), which cleavage is a hallmark of apoptosis, and p23, a poor caspase-7 substrate, are completely cleaved, suggesting that IP(3) R-1 is a relatively late substrate of caspases. Nevertheless, the receptor is fully accessible to proteolysis in cellulo by ectopically overexpressed caspase-7 or by the tobacco etch virus (TEV) protease. Finally, using recombinant caspase-3 and microsomal fractions enriched in IP(3) R-1, we show that the receptor is a poor caspase-3 substrate. Consequently, we conclude that IP(3) R-1 is not a key death substrate. 相似文献
6.
Muromachi K Kamio N Narita T Annen-Kamio M Sugiya H Matsushima K 《Journal of cellular biochemistry》2012,113(4):1348-1358
Matrix metalloproteinase-3 (MMP-3) expression is promoted after pulpotomy, and application of MMP-3 to dental pulp after pulpotomy accelerates angiogenesis and hard tissue formation. However, the mechanism by which MMP-3 promotes dental pulp wound healing is still unclear. Connective tissue growth factor/CCN family 2 (CTGF/CCN2), a protein belonging to the CCN family, is considered to participate in wound healing, angiogenesis, and cell migration. In this study, we examined the involvement of CTGF/CCN2 in MMP-3-induced cell migration in human dental pulp (fibroblast-like) cells. In human dental pulp cells, MMP-3 promoted cell migration, but this effect was clearly blocked in the presence of anti-CTGF/CCN2 antibody. MMP-3 provoked mRNA and protein expression and secretion of CTGF/CCN2 in a concentration- and time-dependent manner. The MMP-3 inhibitor NNGH failed to suppress MMP-3-induced CTGF/CCN2 protein expression. The potent dynamin inhibitor dynasore clearly inhibited MMP-3-induced CTGF/CCN2 expression. These results strongly suggest that MMP-3 induces CTGF/CCN2 production independently of the protease activity of MMP-3 and dependently on dynamin-related endocytosis, which is involved in cell migration in human dental pulp cells. 相似文献
7.
8.
9.
10.
11.
12.
13.
14.
Yuanyuan Xiao Junfeng Han Qianqian Wang Yueqin Mao Meilin Wei Weiping Jia Li Wei 《Journal of cellular biochemistry》2017,118(11):3616-3626
15.
Polly J. Phillips‐Mason Sonya E.L. Craig Susann M. Brady‐Kalnay 《Journal of cellular biochemistry》2014,115(9):1609-1623
16.
17.
Wu X Subramaniam M Negron V Cicek M Reynolds C Lingle WL Goetz MP Ingle JN Spelsberg TC Hawse JR 《Journal of cellular biochemistry》2012,113(2):711-723
The role of estrogen receptor alpha (ERα) in breast cancer has been studied extensively, and its protein expression is prognostic and a primary determinant of endocrine sensitivity. However, much less is known about the role of ERβ and its relevance remains unclear due to the publication of conflicting reports. Here, we provide evidence that much of this controversy may be explained by variability in antibody sensitivity and specificity and describe the development, characterization, and potential applications of a novel monoclonal antibody targeting full-length human ERβ and its splice variant forms. Specifically, we demonstrate that a number of commercially available ERβ antibodies are insensitive for ERβ and exhibit significant cross-reaction with ERα. However, our newly developed MC10 ERβ antibody is shown to be highly specific and sensitive for detection of full-length ERβ and its variant forms. Strong and variable staining patterns for endogenous levels of ERβ protein were detected in normal human tissues and breast tumors using the MC10 antibody. Importantly, ERβ was shown to be expressed in a limited cohort of both ERα positive and ERα negative breast tumors. Taken together, these data demonstrate that the use of poorly validated ERβ antibodies is likely to explain much of the controversy in the field with regard to the biological relevance of ERβ in breast cancer. The use of the MC10 antibody, in combination with highly specific antibodies targeting only full-length ERβ, is likely to provide additional discriminatory features in breast cancers that may be useful in predicting response to therapy. 相似文献
18.
High mobility group box 1 (HMGB1) protein is a crucial nuclear cytokine that elicits severe vascular inflammatory diseases. Oenanthe javanica (water dropwort) extract has anti‐arrhythmic, neuroprotective and anti‐diabetic activity. However, isorhamnetin‐3‐O‐galactoside (I3G), an active compound from O. javanica, is not researched well for its biological activity. Here, we investigated the anti‐inflammatory activities of I3G by monitoring the effects of I3G on the lipopolysaccharide (LPS) or cecal ligation and puncture (CLP)‐mediated release of HMGB1 and HMGB1 or CLP‐mediated modulation of inflammatory responses. I3G potently inhibited the release of HMGB1 and down‐regulated HMGB1‐dependent inflammatory responses in human endothelial cells. I3G also inhibited HMGB1‐mediated hyperpermeability and leukocyte migration in mice. Further studies revealed that I3G suppressed the production of tumor necrosis factor‐α and activation of nuclear factor‐κB by HMGB1. In addition, I3G reduced CLP‐induced HMGB1 release and sepsis‐related mortality. Given these results, I3G should be viewed as a candidate therapeutic agent for the treatment of severe vascular inflammatory diseases such as sepsis or septic shock via inhibition of the HMGB1 signaling pathway. J. Cell. Biochem. 114: 336–345, 2013. © 2012 Wiley Periodicals, Inc. 相似文献
19.
Ana Marcia Escocard de Azevedo Manhaes Fausto Andres Ortiz-Morea Ping He Libo Shan 《植物学报(英文版)》2021,63(1):79-101
As sessile organisms, plants are exposed to pathogen invasions and environmental fluctuations. To overcome the challenges of their surroundings, plants acquire the potential to sense endogenous and exogenous cues, resulting in their adaptability. Hence, plants have evolved a large collection of plasma membrane-resident receptors, including RECEPTOR-LIKE KINASEs(RLKs) and RECEPTOR-LIKE PROTEINs(RLPs) to perceive those signals and regulate plant growth,development, and immunity. The ability of RLKs and RLPs to recognize distinct ligands relies on diverse categories of extracellular domains evolved. Co-regulatory receptors are often required to associate with RLKs and RLPs to facilitate cellular signal transduction. RECEPTOR-LIKE CYTOPLASMIC KINASEs(RLCKs) also associate with the complex, bifurcating the signal to key signaling hubs, such as MITOGEN-ACTIVATED PROTEIN KINASE(MAPK) cascades, to regulate diverse biological processes. Here, we discuss recent knowledge advances in understanding the roles of RLKs and RLPs in plant growth, development, and immunity, and their connection with co-regulatory receptors, leading to activation of diverse intracellular signaling pathways. 相似文献
20.