首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
Abstract

The aim of the study was to examine and compare the effects of methemoglobin (metHb) and ferrylhemoglobin (ferrylHb) on the erythrocyte membrane. Kinetic studies of the decay of ferrylhemoglobin (*HbFe(IV)=O denotes ferryl derivative of hemoglobin present 5 min after initiation of the reaction of metHb with H2O2; ferrylHb) showed that autoredecay of this derivative is slower than its decay in the presence of whole erythrocytes and erythrocyte membranes. It provides evidence for interactions between ferrylHb and the erythrocyte membrane. Both hemoglobin derivatives induced small changes in the structure and function of the erythrocyte membrane which were more pronounced for ferrylHb. The amount of ferrylHb bound to erythrocyte membranes increased with incubation time and, after 2 h, was twice that of membrane-bound metHb. The incubation of erythrocytes with metHb or ferrylHb did not influence osmotic fragility and did not initiate peroxidation of membrane lipids in whole erythrocytes as well as in isolated erythrocyte membranes. Membrane acetylcholinesterase activity increased by about 10% after treatment of whole erythrocytes with both metHb and ferrylHb. ESR spectra of membrane-bound maleimide spin label demonstrated minor changes in the conformation of label-binding proteins in ferrylHb-treated erythrocyte membranes. The fluidity of the membrane surface layer decreased slightly after incubation of erythrocytes and isolated erythrocyte membranes with ferrylHb and metHb. In whole erythrocytes, these changes were not stable and disappeared during longer incubation.  相似文献   

6.
7.
8.
9.
10.
11.
    
Osteoclasts are the multinucleated giant cells formed by cell fusion of mononuclear osteoclast precursors. Despite the finding of several membrane proteins involving DC‐STAMP as regulatory proteins required for fusion among osteoclast precursors, cellular and molecular events concerning this process are still ambiguous. Here we identified Tunneling Nanotubes (TNTs), long intercellular bridges with small diameters, as the essential cellular structure for intercellular communication among osteoclast precursors in prior to cell fusion. Formation of TNTs was highly associated with osteoclastogenesis and it was accompanied with the significant induction of the M‐Sec gene, an essential gene for TNT formation. M‐Sec gene expression was significantly upregulated by RANKL‐treatment in osteoclast precursor cell line. Blockage of TNT formation by Latrunclin B or by M‐Sec siRNA significantly suppressed osteoclastogenesis. We have detected the rapid intercellular transport of not only the membrane phospholipids labeled with DiI but also the DC‐STAMP‐GFP fusion protein through TNTs formed among osteoclast precursors during osteoclastogenesis. Transportation of such regulatory molecules through TNTs would be essential for the process of the specific cell fusion among osteoclast precursors. J. Cell. Biochem. 114: 1238–1247, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

12.
13.
14.
15.
    
  相似文献   

16.
17.
18.
    
An elevation in blood glucose concentration leads to increased risk of developing diabetes‐associated atherosclerotic cardiovascular disease due to an excessive accumulation of cholesterol in arterial macrophages. ATP‐binding cassette transporter A1 (ABCA1) is an atheroprotective protein that mediates the export of cholesterol from macrophages. The present study aims to investigate the effect of hyperglycemia on the regulation of ABCA1 expression and to explore its underlying mechanisms of regulation in macrophages. Our results show that high glucose activates the extracellular signal‐regulated kinases (ERK) signaling pathway via reactive oxygen species (ROS) production, which in turn down‐regulates ABCA1 mRNA and protein expression. This down‐regulation is mediated by accelerating ABCA1 mRNA and protein degradation in macrophages exposed to high concentrations of glucose. Our results provide evidence for the first time that hyperglycemia inhibits ABCA1 expression by ERK‐modulated ABCA1 mRNA and protein stability. Overall, these results provide a mechanism for hyperglycemia‐induced reduction in ABCA1 expression, which suggests a promising strategy for the treatment of diabetes‐associated atherosclerosis. J. Cell. Biochem. 114: 1364–1373, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
20.
Among NSAIDs Celecoxib is one of the most efficient in triggering in vitro cancer cell death, and from this perspective has been subject of numerous studies. However, it is still controversial whether this in vitro‐observed effect can also occur in vivo and contribute to the antitumor action of the drug. Moreover, besides common agreement on the involvement of COX‐independent pathways, the mechanisms underlying Celecoxib toxicity are still unclear. In an attempt to shed light on these mechanisms, I found that cell death only occurs at insoluble concentrations of the drug, and follows irreversible binding and damage of the plasmamembrane by precipitates. This evidence strongly suggests that Celecoxib is devoid of true molecular toxicity. Moreover, since plasma levels reached during therapy are far below the threshold of toxic precipitation, direct cytotoxicity by Celecoxib is unlikely to occur on tumor cells in vivo. Thus the antitumor effect might be only due to COX inhibition, which requires significantly lower levels of the drug. Nonetheless, direct cytotoxicity might not be confined to an in vitro artifact, but contribute to the upper gastrointestinal side effects of Celecoxib. Overall, these findings represent an important basis for further studies on Celecoxib, where true molecular actions of the drug should be discriminated from the precipitate‐dependent ones, and the relationship between in vitro and in vivo effects considered at the light of the precipitate‐dependent model. Moreover, remarkably, this article indicates a model of critical analysis that can be extended to other poorly soluble drugs. J. Cell. Biochem. 114: 1434–1444, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号