首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 7 毫秒
1.
2.
3.
4.
Bone marrow mesenchymal stromal cells (BMMSCs) have been used as feeder support for the ex vivo expansion of hematopoietic stem cells (HSCs) but have the limitations of painful harvest, morbidity, and risk of infection to the patient. This prompted us to explore the use of human umbilical cord Wharton's jelly MSCs (hWJSCs) and its conditioned medium (hWJSC-CM) for ex vivo expansion of HSCs in allogeneic and autologous settings because hWJSCs can be harvested in abundance painlessly, are proliferative, hypoimmunogenic, and secrete a variety of unique proteins. In the presence of hWJSCs and hWJSC-CM, HSCs put out pseudopodia-like outgrowths and became highly motile. Time lapse imaging showed that the outgrowths helped them to migrate towards and attach to the upper surfaces of hWJSCs and undergo proliferation. After 9 days of culture in the presence of hWJSCs and hWJSC-CM, MTT, and Trypan blue assays showed significant increases in HSC numbers, and FACS analysis generated significantly greater numbers of CD34(+) cells compared to controls. hWJSC-CM produced the highest number of colonies (CFU assay) and all six classifications of colony morphology typical of hematopoiesis were observed. Proteomic analysis of hWJSC-CM showed significantly greater levels of interleukins (IL-1a, IL-6, IL-7, and IL-8), SCF, HGF, and ICAM-1 compared to controls suggesting that they may be involved in the HSC multiplication. We propose that cord blood banks freeze autologous hWJSCs and umbilical cord blood (UCB) from the same umbilical cord at the same time for the patient for future ex vivo HSC expansion and cell-based therapies.  相似文献   

5.
6.
Human Wharton's jelly stem cells (hWJSCs) were shown to inhibit the growth of human mammary carcinomas. It is not known whether cell‐free secretions or lysates of hWJSCs do the same on different cancers. They may be less controversial than cells to regulatory bodies for clinical application. We examined the influence of hWJSC conditioned medium (hWJSC‐CM) and cell‐free lysate (hWJSC‐CL) on two osteosarcoma cell lines (MG‐63, SKES‐1) in vitro and on human mammary carcinomas in immunodeficient mice. When exposed to hWJSC‐CL, increased vacuolations in MG‐63 and increased membrane fragmentation in SKES‐1 cells were observed, with greater cell death in SKES‐1. Exposure of SKES‐1 and MG‐63 cells to hWJSC‐CL showed significant decreases in cell proliferation of 46.48 ± 6.66% and 24.32 ± 5.67% respectively compared to controls. MG‐63 and SKES‐1 cells were annexin V‐FITC positive and SKES‐1 TUNEL positive following treatment with hWJSC‐CM and hWJSC‐CL. MG‐63 cells were positive and SKES‐1 cells negative for anti‐BECLIN‐1 and anti‐LC3B following treatment with hWJSC‐CM and hWJSC‐CL. RT‐PCR showed that the pro‐apoptotic BAX gene and the autophagy‐related ATG‐5 and BECLIN‐1 genes were up‐regulated while the anti‐apoptotic BCL2 and SURVIVIN genes were down‐regulated in MG‐63 and SKES‐1 cells treated with hWJSC‐CM and hWJSC‐CL. Injections of hWJSCs and hWJSC‐CM into mammary carcinomas in immunodeficient mice resulted in decreased tumor sizes and weights of 24.86 ± 6.05% to 37.03 ± 5.91% and 47.14 ± 7.36% to 55.09 ± 5.87% respectively at 6 weeks compared to controls. hWJSC‐CM and hWJSC‐CL inhibit mammary carcinoma and osteosarcoma cells via apoptosis and autophagy. J. Cell. Biochem. 114: 366–377, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
Umbilical cord mesenchymal stem cells (MSCs) have been shown to inhibit breast cancer cell growth but it is not known whether this effect is specific to only breast cancer cells. We compared the effects of human Wharton's jelly stem cell (hWJSC) extracts [conditioned medium (hWJSC‐CM) and cell lysate (hWJSC‐CL)] on breast adenocarcinoma (MDA‐MB‐231), ovarian carcinoma (TOV‐112D), and osteosarcoma (MG‐63) cells. The cells were treated with either hWJSC‐CM (50%) or hWJSC‐CL (15 µg/ml) for 48–72 h and changes in cell morphology, proliferation, cycle, gene expression, migration, and cell death studied. All three cancer cell lines showed cell shrinkage, blebbing, and vacuolations with hWJSC‐CL and hWJSC‐CM compared to controls. MTT and BrdU assays showed inhibition of cell growth by 2–6% and 30–60%, while Transwell migration assay showed inhibition by 20–26% and 31–46% for hWJSC‐CM and hWJSC‐CL, respectively, for all three cancer cell lines. Cell cycle assays showed increases in sub‐G1 and G2/M phases for all three cancer cell lines suggestive of apoptosis and metaphase arrest. AnnexinV‐FITC and TUNEL positive cells seen in TOV‐112D and MDA‐MB‐231 suggested that inhibition was via apoptosis while the presence of anti‐BECLIN1 and anti‐LC3B antibodies seen with MG‐63 indicated autophagy. Upregulation of pro‐apoptotic BAX and downregulation of anti‐apoptotic BCL2 and SURVIVIN genes were observed in all three cancer cell lines and additionally the autophagy genes (ATG5, ATG7, and BECLIN1) were upregulated in MG‐63 cells. hWJSCs possess tumor inhibitory properties that are not specific to breast cancer cells alone and these effects are mediated via agents in its extracts. J. Cell. Biochem. 113: 2027–2039, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
9.
10.
11.
The identification and purification of murine multipotent mesenchymal stem cells (MSCs) have been difficult due to their low frequency, the presence of contaminating cell types and lack of unambiguous markers. Using a magnetic micro‐beads negative selection technique to remove hematopoietic cells from mouse bone marrow stromal cells (BMSCs), our lab recently isolated a highly purified osteoprogenitor (HipOP) population that was also enriched for other mesenchymal precursors, including MSCs [Itoh and Aubin, 2009 ]. We now report that HipOPs are also highly enriched in vascular endothelial cells (VECs), which we hypothesized were an accessory cell type regulating osteogenesis. However, when VECs were immunodepleted from HipOPs with anti‐CD31 antibodies, the resulting CD31(?) HipOP population had equal osteogenic capacity to the HipOPs in vitro and in vivo. Analysis of gene expression of Ncad, Pth1r, Ang1, Cxcl12, Jag1, Pdgfr‐β, α‐sma, Desmin, and Ng2 suggested that both HipOPs and CD31(?) HipOPs are hemopoietic stem cell (HSC) niche populations. However, the data support the view that osteoblast differentiation and depletion of VECs modulate the HSC niche. J. Cell. Biochem. 114: 1066–1073, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

12.
13.
Caveolin‐1 is a scaffolding protein of cholesterol‐rich caveolae lipid rafts in the plasma membrane. In addition to regulating cholesterol transport, caveolin‐1 has the ability to bind a diverse array of cell signaling molecules and regulate cell signal transduction in caveolae. Currently, there is little known about the role of caveolin‐1 in stem cells. It has been reported that the caveolin‐1 null mouse has an expanded population of cells expressing stem cell markers in the gut, mammary gland, and brain, suggestive of a role for caveolin‐1 in stem cell regulation. The caveolin‐1 null mouse also has increased bone mass and an increased bone formation rate, and its bone marrow‐derived mesenchymal stem cells (MSCs) have enhanced osteogenic potential. However, the role of caveolin‐1 in human MSC osteogenic differentiation remains unexplored. In this study, we have characterized the expression of caveolin‐1 in human bone marrow derived MSCs. We show that caveolin‐1 protein is enriched in density gradient‐fractionated MSC plasma membrane, consisting of ~100 nm diameter membrane‐bound vesicles, and is distributed in a punctate pattern by immunofluoresence localization. Expression of caveolin‐1 increases in MSCs induced to undergo osteogenic differentiation, and siRNA‐mediated knockdown of caveolin‐1 expression enhances MSC proliferation and osteogenic differentiation. Taken together, these findings suggest that caveolin‐1 normally acts to regulate the differentiation and renewal of MSCs, and increased caveolin‐1 expression during MSC osteogenesis likely acts as a negative feedback to stabilize the cell phenotype. J. Cell. Biochem. 113: 3773–3787, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

14.
In this study, we aimed to research the effects of class‐I HDACs and glucose on differentiation of pancreatic islet derived mesenchymal stem cells (PI‐MSCs) to beta cells. Beta cell differentiation determined by flow cytometric analysis and gene expression levels of PDX1, PAX4, PAX6, NKX6.1, NGN3, INS2, and GLUT2. As a result the valproic acid, is an inhibitor of class‐I HDACs, caused the highest beta cell differentiation in PI‐MSCs. However, the cells in this group were at early stages of differentiation. Glucose co‐administration to this group carried the differentiation to higher levels, but these newly formed beta cells were not functional. Moreover, reduction in the levels of pluripotency factors that Oct3/4, c‐Myc, and Nanog were parallel to beta cell differentiation. Also, the levels of HDAC1 and acetylated H3/H4 were increased and methylated H3 was decreased by VPA treatment. In addition, we have detected over expression in genes of miR‐18a‐5p, miR‐19b‐5p, miR‐30d‐3p, miR‐124, miR‐146a‐5p, miR‐184, miR‐335, and miR‐433‐5p in parallel to beta cell differentiation. As the conclusion, this study is important for understanding the epigenetic mechanism that controls the beta cell differentation and it suggests new molecules that can be used for diagnosis, and treatment of diabetes. J. Cell. Biochem. 119: 455–467, 2018. © 2017 Wiley Periodicals, Inc.  相似文献   

15.
Mesenchymal stem cells (MSCs) are an important cell population in the bone marrow microenvironment. MSCs have the capacity to differentiate in vitro into several mesenchymal tissues including bone, cartilage, fat, tendon, muscle, and marrow stroma. This study was designed to isolate, expand, and characterize the differentiation ability of sheep bone marrow‐derived MSCs and to demonstrate the possibility to permanently express a reporter gene. Bone marrow was collected from the iliac crest and mononuclear cells were separated by density gradient centrifugation. Sheep MSCs cell lines were stable characterized as CD44+ and CD34? and then transfected with a green fluorescent protein (GFP) reporter gene. The GFP expression was maintained in about half (46.6%) of cloned blastocysts produced by nuclear transfer of GFP+ sheep MSCs, suggesting the possibility to establish multipotent embryonic cells' lines carrying the fluorescent tag for comparative studies on the differentiation capacity of adult stem cells (MSCs) versus embryonic stem cells. We found that sheep MSCs under appropriate culture conditions could be induced to differentiate into adipocytes, chondrocytes, and osteoblast lineages. Our results confirm the plasticity of sheep MSCs and establish the foundation for the development of a pre‐clinical sheep model to test the efficiency and safety of cell replacement therapy. J. Cell. Biochem. 114: 134–143, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

16.
17.
18.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号