首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ossification of the posterior longitudinal ligament of the spine (OPLL) is the leading cause of myelopathy in Japan and is diagnosed by ectopic bone formation in the paravertebral ligament. OPLL is a systemic high bone mass disease with a strong genetic background. To detect genes relevant to the pathogenesis of OPLL, we performed a cDNA microarray analysis of systematic gene expression profiles during the osteoblastic differentiation of ligament cells from OPLL patients (OPLL cells), patients with a disorder called ossification of yellow ligament (OYL), and non-OPLL controls together with human mesenchymal stem cells (hMSCs) after stimulating them with osteogenic differentiation medium (OS). Twenty-four genes were up-regulated during osteoblastic differentiation in OPLL cells. Zinc finger protein 145 (promyelotic leukemia zinc finger or PLZF) was one of the highly expressed genes during osteoblastic differentiation in all the cells examined. We investigated the roles of PLZF in the regulation of osteoblastic differentiation of hMSCs and C2C12 cells. Small interfering RNA-mediated gene silencing of PLZF resulted in a reduction in the expression of osteoblast-specific genes such as the alkaline phosphatase, collagen 1A1 (Col1a1), Runx2/core-binding factor 1 (Cbfa1), and osteocalcin genes, even in the presence of OS in hMSCs. The expression of PLZF was unaffected by the addition of bone morphogenetic protein 2 (BMP-2), and the expression of BMP-2 was not affected by PLZF in hMSCs. In C2C12 cells, overexpression of PLZF increased the expression of Cbfa1 and Col1a1; on the other hand, the overexpression of CBFA1 did not affect the expression of Plzf. These findings indicate that PLZF plays important roles in early osteoblastic differentiation as an upstream regulator of CBFA1 and thereby might participate in promoting the ossification of spinal ligament cells in OPLL patients.  相似文献   

2.
3.
Extracellular matrix proteins (ECMs) serve as both a structural support for cells and a dynamic biochemical network that directs cellular activities. ECM proteins such as those of the SIBLING family (small integrin-binding ligand glycoprotein) could possess inherent growth factor activity. In this study, we demonstrate that exon 5 of dentin matrix protein 3 (phosphophoryn (PP)), a non-collagenous dentin ECM protein and SIBLING protein family member, up-regulates osteoblast marker genes in primary human adult mesenchymal stem cells (hMSCs), a mouse osteoblastic cell line (MC3T3-E1), and a mouse fibroblastic cell line (NIH3T3). Quantitative real-time PCR technology was used to quantify gene expression levels of bone markers such as Runx2, Osx (Osterix), bone/liver/kidney Alp (alkaline phosphatase), Ocn (osteocalcin), and Bsp (bone sialoprotein) in response to recombinant PP and stably transfected PP. PP up-regulated Runx2, Osx, and Ocn gene expression. PP increased OCN protein production in hMSCs and MC3T3-E1. ALP activity and calcium deposition was increased by PP in hMSC. Furthermore, an alpha(v)beta(3) integrin-blocking antibody significantly inhibited recombinant PP-induced expression of Runx2 in hMSCs, suggesting that signaling by PP is mediated through the integrin pathway. PP was also shown to activate p38, ERK1/2, and JNK, three components of the MAPK pathway. These data demonstrate a novel signaling function for PP in cell differentiation beyond the hypothesized role of PP in biomineralization.  相似文献   

4.
5.
CIITA and MHC class II expression is silenced during the differentiation of B cells to plasma cells. When B cell differentiation is carried out ex vivo, CIITA silencing occurs rapidly, but the factors contributing to this event are not known. ZBTB32, also known as repressor of GATA3, was identified as an early repressor of CIITA in an ex vivo plasma cell differentiation model. ZBTB32 activity occurred at a time when B lymphocyte-induced maturation protein-1 (Blimp-1), the regulator of plasma cell fate and suppressor of CIITA, was minimally induced. Ectopic expression of ZBTB32 suppressed CIITA and I-A gene expression in B cells. Short hairpin RNA depletion of ZBTB32 in a plasma cell line resulted in re-expression of CIITA and I-A. Compared with conditional Blimp-1 knockout and wild-type B cells, B cells from ZBTB32/ROG-knockout mice displayed delayed kinetics in silencing CIITA during ex vivo plasma cell differentiation. ZBTB32 was found to bind to the CIITA gene, suggesting that ZBTB32 directly regulates CIITA. Lastly, ZBTB32 and Blimp-1 coimmunoprecipitated, suggesting that the two repressors may ultimately function together to silence CIITA expression. These results introduce ZBTB32 as a novel regulator of MHC-II gene expression and a potential regulatory partner of Blimp-1 in repressing gene expression.  相似文献   

6.
7.
8.
9.
We have evaluated the ectopic new bone formation effects of CPC (calcium phosphate cement) seeded with pBMP‐2 (plasmids containing bone morphogenetic protein‐2 gene) transfected canine bMSCs (bone marrow stromal cells) mediated by a non‐viral PEI (polyethylenimine) derivative (GenEscort? II) in nude mice. Canine bMSCs were transfected with pBMP‐2 or pEGFP (plasmids containing enhanced green fluorescent protein gene) mediated by GenEscort? II in vitro, and the osteoblastic differentiation was explored by ALP (alkaline phosphatase) staining, ARS (alizarin red S) staining and RT—qPCR (real‐time quantitative PCR) analysis. Ectopic bone formation effects of CPC/pBMP‐2 transfected bMSCs were evaluated and compared with CPC/pEGFP transfected bMSCs or CPC/untransfected bMSCs through histological, histomorphological and immunohistochemical analysis 8 and 12 weeks post‐operation in nude mice. Transfection efficiency was up ~35% as demonstrated by EGFP (enhanced green fluorescent protein) expression. ALP and ARS staining were stronger with pBMP‐2 gene transfection, and mRNA expression of BMP‐2 (bone morphogenetic protein‐2), Col 1 (collagen 1) and OCN (osteocalcin) in pBMP‐2 group was significantly up‐regulated at 6 and 9 days. Significantly higher NBV (new bone volume) was achieved in pBMP‐2 group than in the control groups at 8 and 12 weeks (P<0.05). In addition, immunohistochemical analysis indicated higher OCN expression in pBMP‐2 group (P<0.01). We conclude that CPC seeded with pBMP‐2 transfected bMSCs mediated by GenEscort? II could enhance ectopic new bone formation in nude mice, suggesting that GenEscort? II mediated pBMP‐2 gene transfer is an effective non‐viral method and CPC is a suitable scaffold for gene enhanced bone tissue engineering.  相似文献   

10.
11.
In patients with inflammatory arthritis, tumour necrosis factor (TNF)‐α are overproduced in inflamed joints. This leads to local erosion of cartilage and bone, periarticular osteopenia, as well as osteoporosis. But less is known regarding the molecular mechanisms that mediate the effect of TNF‐α on osteoblast function. The purpose of this study was to test that C terminus of Hsc70‐interacting protein (CHIP) has a specific role in suppressing the osteogenic activity of osteoblasts under inflammatory conditions. C2C12, MC3T3‐E1 and HEK293T cell lines were cultured and cotransfected with related plasmids. After transfection, the cells were cultured further in the presence or absence of murine TNF‐α and subjected to real time RT‐PCR, Western blot, Ubiquitination assay, Co‐immunoprecipitation, Luciferase reporter assay, Small interfering RNAs and Mineralization assay. The expression levels of TNF‐α‐induced CHIP and Osx were examined by RT‐PCR and Western blot analysis. Co‐immunoprecipitation and ubiquitination assays revealed ubiquitinated Osx, confirmed that CHIP indeed interacted with Osx and identified K55 and K386 residues as the ubiquitination sites in Osx, Luciferase reporter assay and Small interfering RNAs examined whether TNF‐α target the bone morphogenetic protein signalling through CHIP. We established stable cell lines with the overexpression of HA‐CHIP, Mineralization assay and CHIP siRNA demonstrated the important roles of CHIP on osteoblast function in conditions in which TNF‐α is overexpressed. We found that the K55 and K386 residues are ubiquitination site(s) in Osx, and that TNF‐α inhibits osteoblast differentiation by promoting Osx degradation through up‐regulation of E3 ubiquitin ligase CHIP in osteoblast. Thus, CHIP targets Osx for ubiquitination and degradation in osteoblasts after chronic exposure to TNF‐α, and inhibition of CHIP expression in osteoblasts may be a new mechanism to limit inflammation‐mediated osteoporosis by promoting their differentiation into osteoblasts.  相似文献   

12.
Bone homeostasis is achieved by the balance between osteoclast‐dependent bone resorption and osteoblastic events involving differentiation of adult mesenchymal stem cells (MSCs). Prostate carcinoma (PC) cells display the propensity to metastasize to bone marrow where they disrupt bone homeostasis as a result of mixed osteolytic and osteoblastic lesions. The PC‐dependent activation of osteoclasts represents the initial step of tumor engraftment into bone, followed by an accelerated osteoblastic activity and exaggerated bone formation. However, the interactions between PC cells and MSCs and their participation in the disease progression remain as yet unclear. In this study, we show that bone metastatic PC‐3 carcinoma cells release factors that increase the expression by human (h)MSCs of several known pro‐osteoblastic commitment factors, such as α5/β1 integrins, fibronectin, and osteoprotegerin. As a consequence, as shown in an osteogenesis assay, hMSCs treated with conditioned medium (CedM) derived from PC‐3 cells have an enhanced potential to differentiate into osteoblasts, as compared to hMSCs treated with control medium or with CedM from non‐metastatic 22RV1 cells. We demonstrate that FGF‐9, one of the factors produced by PC‐3 cells, is involved in this process. Furthermore, we show that PC‐3 CedM decreases the pro‐osteoclastic activity of hMSCs. Altogether, these findings allow us to propose clues to understand the mechanisms by which PC favors bone synthesis by regulating MSC outcome and properties. J. Cell. Biochem. 112: 3234–3245, 2011. © 2011 Wiley Periodicals, Inc.  相似文献   

13.
14.
15.
16.
Cysteine (C)-X-C motif chemokine receptor 4 (CXCR4), the primary receptor for stromal cell-derived factor-1 (SDF-1), is involved in bone morphogenic protein 2 (BMP2)-induced osteogenic differentiation of mesenchymal progenitors. To target the in vivo function of CXCR4 in bone and explore the underlying mechanisms, we conditionally inactivated CXCR4 in osteoprecursors by crossing osterix (Osx)-Cre mice with floxed CXCR4 (CXCR4(fl/fl)) mice to generate knock-outs with CXCR4 deletion driven by the Osx promoter (Osx::CXCR4(fl/fl)). The Cre-mediated excision of CXCR4 occurred exclusively in bone of Osx::CXCR4(fl/fl) mice. When compared with littermate controls, Osx::CXCR4(fl/fl) mice developed smaller osteopenic skeletons as evidenced by reduced trabecular and cortical bone mass, lower bone mineral density, and a slower mineral apposition rate. In addition, Osx::CXCR4(fl/fl) mice displayed chondrocyte disorganization in the epiphyseal growth plate associated with decreased proliferation and collagen matrix syntheses. Moreover, mature osteoblast-related expression of type I collagen α1 and osteocalcin was reduced in bone of Osx::CXCR4(fl/fl) mice versus controls, suggesting that CXCR4 deficiency results in arrested osteoblast progression. Primary cultures for osteoblastic cells derived from Osx::CXCR4(fl/fl) mice also showed decreased proliferation and impaired osteoblast differentiation in response to BMP2 or BMP6 stimulation, and suppressed activation of intracellular BMP receptor-regulated Smads (R-Smads) and Erk1/2 was identified in CXCR4-deficient cells and bone tissues. These findings provide the first in vivo evidence that CXCR4 functions in postnatal bone development by regulating osteoblast development in cooperation with BMP signaling. Thus, CXCR4 acts as an endogenous signaling component necessary for bone formation.  相似文献   

17.
Mesenchymal stem cells (MSCs) are multipotent stem cells and show distinct features such as capability for self-renewal and differentiation into several lineages of cells including osteoblasts, chondrocytes, and adipocytes. In this study, the methylation status of the promoter region of zinc finger and BTB domain containing 16 (ZBTB16), twist-related protein 1(Twist1), de novo DNA methyltransferases 3A (DNMT3A), SRY-box 9 (Sox9), osteocalcin (OCN), and peroxisome proliferator-activated receptor γ2 (PPARγ2) genes and their messenger RNA (mRNA) expression levels were evaluated during the osteoblastic differentiation of MSCs (ODMSCs). We planned two experimental groups including zoledronic acid (ZA)-treated and nontreated cells (negative control) which both were differentiated into the osteoblasts. Methylation level of DNA in the promoter regions was assayed by methylation-specific-quantitative polymerase chain reaction (MS-qPCR), and mRNA levels of the target inhibitory/stimulatory genes during osteoblastic differentiation of MSCs were measured using real-time PCR. During the experimental induction of ODMSCs, the mRNA expression of the OCN gene was upregulated and methylation level of its promoter region was decreased. Moreover, Sox9 and PPARγ2 mRNA levels were attenuated and their promoter regions methylation levels were significantly augmented. However, the mRNA expression of the DNMT3A was not affected during the ODMSCs though its methylation rate was increased. In addition, ZA could enhance the expression of the ZBTB16 and decrease its promoter regions methylation and on the opposite side, it diminished mRNA expression of Sox9, Twist1, and PPARγ2 genes and increased their methylation rates. Intriguingly, ZA did not show a significant impact on gene expression and methylation levels the OCN and DNMT3A. We found that methylation of the promoter regions of Sox9, OCN, and PPARγ2 genes might be one of the main mechanisms adjusting the genes expression during the ODMSCs. Furthermore, we noticed that ZA can accelerate the MSCs differentiation to the osteoblast cells via two regulatory processes; suppression of osteoblastic differentiation inhibitor genes including Sox9, Twist1, and PPARγ2, and through promotion of the ZBTB16 expression.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号