首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
Microtubules provide structural support for a cell and play key roles in cell motility, mitosis, and meiosis. They are also the targets of several anticancer agents, indicating their importance in maintaining cell viability. We have investigated the possibility that alterations in microtubule structure and tubulin polymerization may be part of the cellular response to DNA damage. In this report, we find that γ-radiation stimulates the production and polymerization of α-, β-, and γ- tubulin in hematopoeitic cell lines (Ramos, DP16), leading to visible changes in microtubule structures. We have found that this microtubule reorganization can be prevented by caffeine, a drug that concomitantly inhibits DNA damage-induced cell cycle arrest and apoptosis. Our results support the idea that microtubule polymerization is an important facet of the mammalian response to DNA damage.  相似文献   

8.
5α‐Androst‐16‐en‐3α‐ol (α‐androstenol) is an important contributor to human axilla sweat odor. It is assumed that α‐andostenol is excreted from the apocrine glands via a H2O‐soluble conjugate, and this precursor was formally characterized in this study for the first time in human sweat. The possible H2O‐soluble precursors, sulfate and glucuronide derivatives, were synthesized as analytical standards, i.e., α‐androstenol, β‐androstenol sulfates, 5α‐androsta‐5,16‐dien‐3β‐ol (β‐androstadienol) sulfate, α‐androstenol β‐glucuronide, α‐androstenol α‐glucuronide, β‐androstadienol β‐glucuronide, and α‐androstenol β‐glucuronide furanose. The occurrence of α‐androstenol β‐glucuronide was established by ultra performance liquid chromatography (UPLC)/MS (heated electrospray ionization (HESI)) in negative‐ion mode in pooled human sweat, containing eccrine and apocrine secretions and collected from 25 female and 24 male underarms. Its concentration was of 79 ng/ml in female secretions and 241 ng/ml in male secretions. The release of α‐androstenol was observed after incubation of the sterile human sweat or α‐androstenol β‐glucuronide with a commercial glucuronidase enzyme, the urine‐isolated bacteria Streptococcus agalactiae, and the skin bacteria Staphylococcus warneri DSM 20316, Staphylococcus haemolyticus DSM 20263, and Propionibacterium acnes ATCC 6919, reported to have β‐glucuronidase activities. We demonstrated that if α‐ and β‐androstenols and androstadienol sulfates were present in human sweat, their concentrations would be too low to be considered as potential precursors of malodors; therefore, the H2O‐soluble precursor of α‐androstenol in apocrine secretion should be a β‐glucuronide.  相似文献   

9.
The solid-state conformation of copolymers of β-benzyl-L -aspartate [L -Asp(OBzl)] with L -leucine (L -Leu), L -alanine (L -Ala), L -valine (L -Val), γ-benzyl-L -glutamate [L -Glu(OBzl)], or ?-carbobenzoxy-L -lysine (Cbz-L -Lys) has been studied by ir spectroscopy and circular dichroism (CD). The ir spectra in the region of the amide I and II bands and in the region of 700–250 cm?1 have been determined. The results from the ir studies are in good agreement with data obtained by CD experiments. Incorporation of the amino acid residues mentioned above into poly[L -Asp(OBzl)] induces a change from the left-handed into the right-handed α-helix. This conformational change for the poly[L -Asp(OBzl)] copolymers was observed in the following composition ranges: L -Leu, 0–15 mol %; L -Ala, 0–32 mol %; L -Val, 0–8 mol %; L -Glu(OBzl), 3–10 mol %; and Cbz-L -Lys, 0–9 mol %.  相似文献   

10.
11.
12.
13.
During the corresponding author's transfer from Dongguk University to Sungkyunkwan University in March 2006, data from the previous University was transferred to the corresponding author's new computer. During this data transfer there was a mixing of EMSA data from experiments involving Quercetin (QC), Ochnaflavone (OC), Tanshinone (TS), Crytotanshinone (CT), BMK, and natural extracts. The mixed EMSA data was inadvertently incorporated in more than one publication. Figure 6 has been corrected to new data with re‐confirmation. J. Cell. Biochem. 108: 337, 2009. © 2009 Wiley‐Liss, Inc.

6. Effect of OC on the TNF‐α‐induced DNA binding activities of MMP‐9, NF‐κB, and AP‐1 motif in HASMC. Cells were pretreated with indicated OC for 40 min in serum‐free medium, were incubated with TNF‐α (100 ng/ml) for 24 h. Nuclear extracts were analyzed by EMSA for the activated NF‐κB (A) and AP‐1 (B) using radiolabeled oligonucleotide probes, respectively. Indicated values are means of three triplicate experiments.  相似文献   


14.
15.
16.
17.
This review gives a broad overview of the state of play with respect to the synthesis, conformational properties, and biological activity of α‐fluorinated β‐amino acids and derivatives. General methods are described for the preparation of monosubstituted α‐fluoro‐β‐amino acids (Scheme 1). Nucleophilic methods for the introduction of fluorine predominantly involve the reaction of DAST with alcohols derived from α‐amino acids, whereas electrophilic sources of fluorine such as NFSI have been used in conjunction with Arndt? Eistert homologation, conjugate addition or organocatalyzed Mannich reactions. α,α‐Difluoro‐β‐amino acids have also been prepared using DAST; however, this area of synthesis is largely dominated by the use of difluorinated Reformatsky reagents to introduce the difluoro ester functionality (Scheme 9). α‐Fluoro‐β‐amino acids and derivatives analyzed by X‐ray crystal and NMR solution techniques are found to adopt preferred conformations which are thought to result from stereoelectronic effects associated with F located close to amines, amides, and esters (Figs. 26). α‐Fluoro amide and β‐fluoro ethylamide/amine effects can influence the secondary structure of α‐fluoro‐β‐amino acid‐containing derivatives including peptides and peptidomimetics (Figs. 79). α‐Fluoro‐β‐amino acids are also components of a diverse range of bioactive anticancer (e.g., 5‐fluorouracil), antifungal, and antiinsomnia agents as well as protease inhibitors where such fluorinated analogs have shown increased potency and spectrum of activity.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号